The depth of centres of maps on dendrites

被引:12
作者
Kato, H [1 ]
机构
[1] Univ Tsukuba, Inst Math, Ibaraki, Osaka 305, Japan
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1998年 / 64卷
关键词
dendrite; non-wandering points; centre; depth;
D O I
10.1017/S1446788700001282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Xiong proved that if S : I --> I is any map of the unit interval I, then the depth of the centre of S is at most 2, and Ye proved that for any map f : T --> T of a finite tree T, the depth of the centre of f is at most 3. It is natural to ask whether the result can be generalized to maps of dendrites. In this note, we show that there is a dendrite D such that for any countable ordinal number lambda there isa map f : D --> D such that the depth of centre of f is h. As a corollary, we show that for any countable ordinal number lambda there is a map (respectively a homeomorphism) f of a 2-dimensional ball B-2 (respectively a 3-dimensional ball B-3) such that the depth of centre of f is lambda.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 7 条
[1]   A NOTE ON PERIODIC POINTS AND RECURRENT POINTS OF MAPS OF DENDRITES [J].
KATO, H .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (03) :459-461
[2]  
Krasinkiewicz J., 1976, FUND MATH, V92, P95
[3]  
MOISE E.E., 1977, GRADUATE TEXTS MATH, V47
[4]  
Nadler Jr S.B., 1992, Pure Appl. Math., V158
[5]   CENTRAL SEQUENCES IN DYNAMICAL-SYSTEMS [J].
NEUMANN, DA .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (01) :1-18
[6]  
XIONG JC, 1983, KEXUE TONGBAO, V28, P21
[7]   THE CENTER AND THE DEPTH OF THE CENTER OF A TREE MAP [J].
YE, XD .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (02) :347-350