MICROLOCAL SINGULARITIES AND SCATTERING THEORY FOR SCHRODINGER EQUATIONS ON MANIFOLDS

被引:0
作者
Nakamura, S. [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
来源
XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS | 2014年
关键词
Schrodinger equations; microlocal singularities; scattering theory; WAVE-FRONT SET; ASYMPTOTICALLY EUCLIDEAN SPACES; LONG-RANGE PERTURBATIONS; PROPAGATION; OPERATORS; LAPLACIAN; METRICS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Here we review several recent results on the propagation of microlocal singularities for (1) the solutions to Schrodinger equations; and (2) scattering matrices for Schrodinger operators on manifolds. These results are both closely related to a construction of classical mechanical scattering theory on manifolds, and scattering type time evolutions. We first recall the basic ideas of scattering theories, both classical mechanical and quantum mechanical ones. Then we construct a classical mechanical scattering theory on asymptotically conic manifolds. By using different quantizations, we obtain two different sets of microlocal results described above.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 40 条
[1]   Strichartz estimates for long range perturbations [J].
Bouclet, Jean-Marc ;
Tzvetkov, Nikolay .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (06) :1565-1609
[2]   Strichartz Estimates Without Loss on Manifolds with Hyperbolic Trapped Geodesics [J].
Burq, Nicolas ;
Guillarmou, Colin ;
Hassell, Andrew .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (03) :627-656
[3]   Microlocal dispersive smoothing for the Schrodinger equation [J].
Craig, W ;
Kappeler, T ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (08) :769-860
[4]  
Debievre S., 1992, Reviews in Mathematical Physics, V4, P575, DOI 10.1142/S0129055X92000236
[5]  
Doi S., 2003, HYPERBOLIC PROBLEMS, P185
[6]  
Donnelly H, 1999, MICH MATH J, V46, P101
[7]   SPECTRAL-ANALYSIS OF 2ND-ORDER ELLIPTIC-OPERATORS ON NONCOMPACT MANIFOLDS [J].
FROESE, R ;
HISLOP, P .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) :103-129
[8]   The Schrodinger propagator for scattering metrics [J].
Hassell, A ;
Wunsch, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :487-523
[9]   Sharp Strichartz estimates on nontrapping asymptotically conic manifolds [J].
Hassell, Andrew ;
Tao, Terence ;
Wunsch, Jared .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (04) :963-1024
[10]  
Hempel R., 2012, PREPRINT