SEM Image Denoising and Contour Image Estimation using Deep Learning

被引:2
作者
Chaudhary, Narendra [1 ]
Savari, Serap A. [1 ]
Brackmann, Varvara [2 ]
Friedrich, Michael [2 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Fraunhofer Inst Photon Microsyst, Nanosyst Technol, Koenigsbruecker Str 178, D-01099 Dresden, Germany
来源
2020 31ST ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC) | 2020年
关键词
Deep learning; SEM metrology; line edge roughness; denoising; deep convolutional neural networks;
D O I
10.1109/asmc49169.2020.9185250
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The estimation of line and contour geometries from real SEM images is a challenging problem due to the corruption of such images by Poisson noise, edge effects, and other SEM artifacts. We attempt simultaneous contour edge image prediction and SEM image denoising using a deep convolutional neural network LineNet2. To capture a range of edge effects in real SEM images, we simulate a training dataset of rough line SEM images with random edge effect parameters. We train the LineNet2 network on this training dataset and randomly rotate the images during the training phase. The retrained LineNet2 shows the ability to denoise real SEM images of line and contour geometries. We measure the line edge roughness (LER) parameter in isolated and dense regions of rough line images through multiple LER methods. Our experiments also demonstrate that the network can learn to recognize contour edges just by rotating rough line images.
引用
收藏
页数:6
相关论文
共 13 条
  • [1] [Anonymous], 2009, P SPIE
  • [2] Chaudhary N., 2018, P SPIE
  • [3] Chaudhary N., 2019, P 30 ANN SEMI ASMC, P431, DOI [10.1109/ASMC.2019/8791764, DOI 10.1109/ASMC.2019/8791764]
  • [4] Line roughness estimation and Poisson denoising in scanning electron microscope images using deep learning
    Chaudhary, Narendra
    Savari, Serap A.
    Yeddulapalli, Sai S.
    [J]. JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2019, 18 (02):
  • [5] Automated Rough Line Edge Estimation from SEM Images using Deep Convolutional Neural Networks
    Chaudhary, Narendra
    Savari, Serap A.
    Yeddulapalli, S. S.
    [J]. PHOTOMASK TECHNOLOGY 2018, 2018, 10810
  • [6] Simulated SEM Images for Resolution Measurement
    Cizmar, P.
    Vladar, A. E.
    Ming, B.
    Postek, M. T.
    [J]. SCANNING, 2008, 30 (05) : 381 - 391
  • [7] Need for LWR metrology standardization:the imec roughness protocol
    Lorusso, Gian Francesco
    Sutani, Takumichi
    Rutigliani, Vito
    Van Roey, Frieda
    Moussa, Alain
    Charley, Anne-Laure
    Mack, Chris
    Naulleau, Patrick
    Perera, Chami
    Constantoudis, Vassilios
    Ikota, Masami
    Ishimoto, Toru
    Koshihara, Shunsuke
    [J]. JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2018, 17 (04):
  • [8] ROUGHNESS SPECTRUM AND SURFACE WIDTH OF SELF-AFFINE FRACTAL SURFACES VIA THE K-CORRELATION MODEL
    PALASANTZAS, G
    [J]. PHYSICAL REVIEW B, 1993, 48 (19): : 14472 - 14478
  • [10] Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library
    Villarrubia, J. S.
    Vladar, A. E.
    Ming, B.
    Kline, R. J.
    Sunday, D. F.
    Chawla, J. S.
    List, S.
    [J]. ULTRAMICROSCOPY, 2015, 154 : 15 - 28