Introduction to string theory and conformal field theory

被引:3
作者
Belavin, A. A. [1 ]
Tarnopolsky, G. M. [1 ]
机构
[1] Russian Acad Sci, LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
MINIMAL LIOUVILLE GRAVITY; QUANTUM-GRAVITY; 2D;
D O I
10.1134/S1063778810050108
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
引用
收藏
页码:848 / 877
页数:30
相关论文
共 13 条
[1]   Integrals over moduli spaces, ground ring, and four-point function in minimal Liouville gravity [J].
Belavin, A. A. ;
Zamolodchikov, Al. B. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 147 (03) :729-754
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]  
BELAVIN AA, HEPTH08110450
[4]   CONFORMAL FIELD-THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1988, 3 (17) :1651-1656
[5]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[6]   CONFORMAL FIELD-THEORY AND 2-D QUANTUM-GRAVITY [J].
DISTLER, J ;
KAWAI, H .
NUCLEAR PHYSICS B, 1989, 321 (02) :509-527
[7]  
Ginsparg P. H., HEPTH9304011
[8]   FRACTAL STRUCTURE OF 2D - QUANTUM-GRAVITY [J].
KNIZHNIK, VG ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
MODERN PHYSICS LETTERS A, 1988, 3 (08) :819-826
[9]  
Polyakov A.M., 1987, Gauge fields and strings
[10]   QUANTUM GEOMETRY OF BOSONIC STRINGS [J].
POLYAKOV, AM .
PHYSICS LETTERS B, 1981, 103 (03) :207-210