Common fixed point theorems in intuitionistic Menger space using property E.A. and an application to Fredholm integral equations

被引:3
作者
Leila, Ben Aoua [1 ]
Berrah, Khaled [2 ]
Oussaeif, Taki Eddine [1 ]
Manro, Saurabh [3 ]
机构
[1] Larbi ben Mhidi Univ, Dept Math & Comp Sci, Constantine St, Oum El Bouaghi 04000, Algeria
[2] Larbi Tebessi Univ, Dept Math & Comp Sci, Lab Math Informat & Syst LAMIS, Constantine St, Tebessa 1200, Algeria
[3] Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India
关键词
Common fixed point theorems; Intuitionistic menger space; Weakly compatible mapping; Property E.A; Common property E.A; Fredholm integral equations;
D O I
10.1080/09720502.2021.1947001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to use the notions of E.A. property and common property E.A. to prove some common fixed point theorems for weakly compatible mappings in intuitionistic Menger spaces. We establish and improve our results by proving the existence and the uniqueness of a common solution of the system of Fredholm integral equations. Some examples are given in order to support our results.
引用
收藏
页码:2187 / 2207
页数:21
相关论文
共 26 条
[1]   Some new common fixed point theorems under strict contractive conditions [J].
Aamri, M ;
El Moutawakil, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :181-188
[2]   ON SOME RESULTS IN FUZZY METRIC-SPACES [J].
GEORGE, A ;
VEERAMANI, P .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :395-399
[3]   Generalized contraction mapping principles in probabilistic metric spaces [J].
Hadzic, O ;
Pap, E ;
Radu, V .
ACTA MATHEMATICA HUNGARICA, 2003, 101 (1-2) :131-148
[4]  
Hadzic O., 2001, Fixed point theory in probabilistic metric spaces
[5]  
He JH, 2007, INT J NONLINEAR SCI, V8, P1
[6]  
Jain A, 2015, ITAL J PURE APPL MAT, P557
[7]  
Jungck G, 1998, INDIAN J PURE AP MAT, V29, P227
[8]  
Jungck G., 1986, INT J MATH MATH SCI, V9, P771, DOI DOI 10.1155/S0161171286000935
[9]  
Klement ErichPeter., 2000, Triangular Norms
[10]  
KRAMOSIL I, 1975, KYBERNETIKA, V11, P336