Relational graph convolutional networks: a closer look

被引:11
作者
Thanapalasingam, Thiviyan [1 ,2 ]
van Berkel, Lucas [1 ]
Bloem, Peter [2 ]
Groth, Paul [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Noord Holland, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam, Noord Holland, Netherlands
关键词
Relational graphs; Graph convolutional network; Representation learning; Link prediction; Node classification; Knowledge graphs;
D O I
10.7717/peerj-cs.1073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we describe a reproduction of the Relational Graph Convolutional Network (RGCN). Using our reproduction, we explain the intuition behind the model. Our reproduction results empirically validate the correctness of our implementations using benchmark Knowledge Graph datasets on node classification and link prediction tasks. Our explanation provides a friendly understanding of the different components of the RGCN for both users and researchers extending the RGCN approach. Furthermore, we introduce two new configurations of the RGCN that are more parameter efficient. The code and datasets are available at https:// github.com/thiviyanT/torch-rgcn.
引用
收藏
页数:33
相关论文
共 41 条
[1]  
Abadi M., 2016, arXiv, DOI DOI 10.48550/ARXIV.1603.04467
[2]  
Al-Rfou R., 2016, arXiv
[3]  
[Anonymous], 2013, Proceedings of the 51st ACL
[4]  
[Anonymous], 2013, P 2013 ACM SIGMOD IN
[5]   A Medium-Scale Distributed System for Computer Science Research: Infrastructure for the Long Term [J].
Bal, Henri ;
Epema, Dick ;
de laat, Cees ;
van Nieuwpoort, Rob ;
Romein, John ;
Seinstra, Frank ;
Snoek, Cees ;
Wijshoff, Harry .
COMPUTER, 2016, 49 (05) :54-63
[6]  
Bloehdorn S, 2007, LECT NOTES COMPUT SC, V4825, P58
[7]  
Bordes A., 2013, NIPS'13, P1
[8]  
Chen JJ, 2020, AAAI CONF ARTIF INTE, V34, P10542
[9]  
Chen MQ, 2021, Arxiv, DOI arXiv:2109.05922
[10]  
de Boer Victor, 2012, The Semantic Web: Research and Applications. Proceedings 9th Extended Semantic Web Conference (ESWC 2012), P733, DOI 10.1007/978-3-642-30284-8_56