Multi-objective optimization of an innovative power-cooling integrated system based on gas turbine cycle with compressor inlet air precooling, Kalina cycle and ejector refrigeration cycle

被引:20
作者
Du, Yang [1 ,2 ]
Jiang, Nan [1 ]
Zhang, Yicen [1 ]
Wang, Xu [1 ]
Zhao, Pan [1 ]
Wang, Jiangfeng [1 ]
Dai, Yiping [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Turbomachinery, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark
关键词
Ejector refrigeration cycle; Kalina cycle; Air precooling; Multi-objective optimization; Gas turbine; WASTE HEAT-RECOVERY; PERFORMANCE ANALYSIS; THERMODYNAMIC ANALYSIS; DESIGN; DRIVEN; ORC;
D O I
10.1016/j.enconman.2021.114473
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, an innovative power-cooling integrated system based on gas turbine, Kalina cycle system, ejector refrigeration cycle (GT-KCS-ERC) is proposed. The ERC driven by GT flue gas and KCS low concentration liquid waste heat is utilized to precool GT inlet air for producing extra power from GT and provide some cooling capacity for users, simultaneously. The comprehensive thermodynamic and thermo-economic analyses are conducted to demonstrate the feasibility of novel GT-KCS-ERC hybrid system by comparing with standalone GT-KCS system. Furthermore, the effects of seven key operation parameters on the system performances are investigated. The multi-objective optimization of GT-KCS-ERC hybrid system and standalone GT-KCS system is carried out through Non-dominated Sorting Genetic Algorithm-II, in which the objectives are maximum total energy efficiency and minimum levelized cost of energy (LCOE). The results show that the total energy efficiency of GTKCS-ERC increases with increasing pinch point temperature difference of boiler Delta TKCS,boi and decreasing ammonia concentration of working solution in KCS, while that of standalone GT-KCS shows opposite trends. The LCOE of GT-KCS-ERC is lower than that of standalone GT-KCS as Delta TKCS,boi is larger than 21 degrees C or turbine inlet pressure of KCS is higher than 6.6 MPa. The optimal saturated evaporator temperature and pressure ratio of vapor generator to condenser in ERC with optimal refrigerant of R290 are 0 degrees C and 4, respectively. Under the optimal condition, the GT-KCS-ERC with an ERC secondary flow split ratio of 0.162 for precooling GT inlet air presents 219.4 kW more net power and 764.2 kW more cooling capacity than standalone GT-KCS system. The LCOE decreases by 0.802% and total energy efficiency increases by 5.347% in novel GT-KCS-ERC system comparing with standalone GT-KCS system.
引用
收藏
页数:20
相关论文
共 39 条
[1]   Thermodynamic and economic analysis of a Kalina system with integrated lithium-bromide-absorption cycle for power and cooling production [J].
Abam, Fidelis, I ;
Briggs, Tobinson A. ;
Diemuodeke, Ogheneruona E. ;
Ekwe, Ekwe B. ;
Ujoatuonu, Keneth N. ;
Isaac, John ;
Ndukwu, M. C. .
ENERGY REPORTS, 2020, 6 :1992-2005
[2]   Modelling and performance analysis of an innovative CPVT, wind and biogas integrated comprehensive energy system: An energy and exergy approach [J].
Bamisile, Olusola ;
Huang, Qi ;
Li, Jian ;
Dagbasi, Mustafa ;
Kemena, Awoh Desire ;
Abid, Muhammad ;
Hu, Weihao .
ENERGY CONVERSION AND MANAGEMENT, 2020, 209
[3]  
Bejan A., 1995, Thermal design and optimization
[4]   Ejector refrigeration: A comprehensive review [J].
Besagni, Giorgio ;
Mereu, Riccardo ;
Inzoli, Fabio .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 :373-407
[5]   Performance analysis of a combined power and refrigeration cycle [J].
Bian, Yongning ;
Pan, Junxiu ;
Liu, Yang ;
Zhang, Fengge ;
Yang, Yunjie ;
Arima, Hirofumi .
ENERGY CONVERSION AND MANAGEMENT, 2019, 185 :259-270
[6]   Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators [J].
Cao, Yue ;
Gao, Yike ;
Zheng, Ya ;
Dai, Yiping .
ENERGY CONVERSION AND MANAGEMENT, 2016, 116 :32-41
[7]   A review on versatile ejector applications in refrigeration systems [J].
Chen, Jianyong ;
Jarall, Sad ;
Havtun, Hans ;
Palm, Bjorn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 49 :67-90
[8]   Thermodynamic and thermoeconomic analysis of innovative integration of Kalina and absorption refrigeration cycles for simultaneously cooling and power generation [J].
Dhahad, Hayder A. ;
Hussen, Hasanen M. ;
Phong Thanh Nguyen ;
Ghaebi, Hadi ;
Ashraf, Muhammad Aqeel .
ENERGY CONVERSION AND MANAGEMENT, 2020, 203
[9]   Exergy loss characteristics of a recuperated gas turbine and Kalina combined cycle system using different inlet guide vanes regulation approaches [J].
Du, Yang ;
Zheng, Shaoxiong ;
Chen, Kang ;
Fan, Gang ;
Wang, Jiangfeng ;
Zhao, Pan ;
Dai, Yiping .
ENERGY CONVERSION AND MANAGEMENT, 2021, 230
[10]   Novel operation strategy for a gas turbine and high-temperature KCS combined cycle [J].
Du, Yang ;
Fan, Gang ;
Zheng, Shaoxiong ;
Zhao, Pan ;
Wang, Jiangfeng ;
Dai, Yiping .
ENERGY CONVERSION AND MANAGEMENT, 2020, 217