Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis

被引:10
作者
Ouchi, Hiroki [1 ,2 ]
Shindo, Hiroyuki [1 ,2 ]
Matsumoto, Yuji [1 ,2 ]
机构
[1] Nara Inst Sci & Technol, Ikoma, Nara, Japan
[2] RIKEN Ctr Adv Intelligence Project AIP, Tokyo, Japan
来源
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1 | 2017年
关键词
D O I
10.18653/v1/P17-1146
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The performance of Japanese predicate argument structure (PAS) analysis has improved in recent years thanks to the joint modeling of interactions between multiple predicates. However, this approach relies heavily on syntactic information predicted by parsers, and suffers from error propagation. To remedy this problem, we introduce a model that uses grid-type recurrent neural networks. The proposed model automatically induces features sensitive to multi-predicate interactions from the word sequence information of a sentence. Experiments on the NAIST Text Corpus demonstrate that without syntactic information, our model outperforms previous syntax-dependent models.
引用
收藏
页码:1591 / 1600
页数:10
相关论文
共 28 条
  • [1] [Anonymous], 2016, P 2016 C EMP METH NA
  • [2] [Anonymous], 2008, Advances in neural information processing systems, DOI DOI 10.1007/978-1-4471-4072-6_12
  • [3] [Anonymous], ICLR
  • [4] Bastien F., 2012, Theano: new features and speed improvements
  • [5] Carreras X., 2005, P 9 C COMP NAT LANG, P152
  • [6] Cho K, 2014, ARXIV14061078, P1724, DOI [DOI 10.3115/V1/D14-1179, 10.3115/V1/D14-1179]
  • [7] Collobert R, 2011, J MACH LEARN RES, V12, P2493
  • [8] Graves A, 2005, LECT NOTES COMPUT SC, V3697, P799
  • [9] Graves Alan, 2013, P AUT SPEECH REC UND
  • [10] Hangyo Masatsugu, 2013, P EMNLP, P924