Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature

被引:450
|
作者
Arasaratnam, Ienkaran [1 ]
Haykin, Simon
Elliott, Robert J.
机构
[1] McMaster Univ, Commun Res Lab, Hamilton, ON L8S 4K1, Canada
[2] Univ Calgary, Haskayne Sch Business Sci, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gauss-Hermite quadrature rule; Gaussian sum filter; nonlinear filtering; quadrature Kalman filter; statistical linear regression (SLR);
D O I
10.1109/JPROC.2007.894705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new version of the quadrature Kalman filter (QKF) is developed theoretically and tested experimentally. We first derive the new QKF for nonlinear systems with additive Gaussian noise by linearizing the process and measurement functions using statistical linear regression (SLR) through a set of Gauss-Hermite quadrature points that parameterize the Gaussian density. Moreover, we discuss how the new QKF can be extended and modified to take into account specific details of a given application. We then go on to extend the use of the new QKF to discrete-time, nonlinear systems with additive, possibly non-Gaussian noise. A bank of parallel QKFs, called the Gaussian sum-quadrature Kalman filter (GS-QKF) approximates the predicted and posterior densities as a finite number of weighted sums of Gaussian densities. The weights are obtained from the residuals of the QKFs. Three different Gaussian mixture reduction techniques are presented to alleviate the growing number of the Gaussian sum terms inherent to the GS-QKFs. Simulation results exhibit a significant improvement of the GS-QKFs over other nonlinear filtering, approaches, namely, the basic bootstrap (particle) filters and Gaussian-sum extended Kalman filters, to solve nonlinear nonGaussian filtering problems.
引用
收藏
页码:953 / 977
页数:25
相关论文
共 50 条
  • [21] Multiple Sensor Estimation Using the Sparse Gauss-Hermite Quadrature Information Filter
    Jia, Bin
    Xin, Ming
    Cheng, Yang
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 5544 - 5549
  • [22] Computational Guidance Using Sparse Gauss-Hermite Quadrature Differential Dynamic Programming
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    IFAC PAPERSONLINE, 2019, 52 (12): : 13 - 18
  • [23] Conditional Gauss-Hermite Filtering With Application to Volatility Estimation
    Singer, Hermann
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2476 - 2481
  • [24] Utilizing Gauss-Hermite quadrature to evaluate uncertainty in dynamic system
    Fleld, RV
    Paez, TL
    Red-Horse, JR
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 1856 - 1861
  • [25] On discrete Gauss-Hermite functions and eigenvectors of the discrete Fourier transform
    Santhanam, Balu
    Santhanam, Thalanayar S.
    SIGNAL PROCESSING, 2008, 88 (11) : 2738 - 2746
  • [26] Multiple sparse-grid Gauss-Hermite filtering
    Radhakrishnan, Rahul
    Singh, Abhinoy Kumar
    Bhaumik, Shovan
    Tomar, Nutan Kumar
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4441 - 4450
  • [27] An Efficient Approximation of Spatial Correlation Based on Gauss-Hermite Quadrature
    Zhang, Lin
    Luo, Zhen
    Leung, Shu-Hung
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) : 617 - 626
  • [28] Sparse Gauss-Hermite Quadrature Filter For Spacecraft Attitude Estimation
    Jia, Bin
    Xin, Ming
    Cheng, Yang
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 2873 - 2878
  • [29] NONEXISTENCE OF EXTENDED GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE RULES WITH POSITIVE WEIGHTS
    KAHANER, DK
    MONEGATO, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (06): : 983 - 986
  • [30] Numerical Solution of the Linear Fractional Delay Differential Equation Using Gauss-Hermite Quadrature
    Aljawi, Salma
    Aljohani, Sarah
    Kamran
    Ahmed, Asma
    Mlaiki, Nabil
    SYMMETRY-BASEL, 2024, 16 (06):