Probabilistic Graphical Modeling for Estimating Risk of Coronary Artery Disease: Applications of a Flexible Machine-Learning Method

被引:17
作者
Gupta, Alind [1 ]
Slater, Justin J. [1 ]
Boyne, Devon [1 ,2 ]
Mitsakakis, Nicholas [3 ,4 ]
Beliveau, Audrey [5 ]
Druzdzel, Marek J. [6 ]
Brenner, Darren R. [1 ,2 ]
Hussain, Selena [3 ]
Arora, Paul [1 ,3 ]
机构
[1] Lighthouse Outcomes, 1 Univ Ave,3rd Floor, Toronto, ON M5J 2P1, Canada
[2] Univ Calgary, Cumming Sch Med, Calgary, AB, Canada
[3] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[4] Univ Toronto, Inst Hlth Policy Management & Evaluat, Toronto, ON, Canada
[5] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
[6] Univ Pittsburgh, Sch Comp & Informat, Pittsburgh, PA USA
关键词
Bayesian networks; coronary artery disease; graphical models; risk prediction; HEOR; machine learning; artificial intelligence; risk modeling; cardiology; statistical models; Bayesian statistics; DIAGNOSIS; PREDICTION;
D O I
10.1177/0272989X19879095
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives. Coronary artery disease (CAD) is the leading cause of death and disease burden worldwide, causing 1 in 7 deaths in the United States alone. Risk prediction models that can learn the complex causal relationships that give rise to CAD from data, instead of merely predicting the risk of disease, have the potential to improve transparency and efficacy of personalized CAD diagnosis and therapy selection for physicians, patients, and other decision makers. Methods. We use Bayesian networks (BNs) to model the risk of CAD using the Z-Alizadehsani data set-a published real-world observational data set of 303 Iranian patients at risk for CAD. We also describe how BNs can be used for incorporation of background knowledge, individual risk prediction, handling missing observations, and adaptive decision making under uncertainty. Results. BNs performed on par with machine-learning classifiers at predicting CAD and showed better probability calibration. They achieved a mean 10-fold area under the receiver-operating characteristic curve (AUC) of 0.93 +/- 0.04, which was comparable with the performance of logistic regression with L1 or L2 regularization (AUC: 0.92 +/- 0.06), support vector machine (AUC: 0.92 +/- 0.06), and artificial neural network (AUC: 0.91 +/- 0.05). We describe the use of BNs to predict with missing data and to adaptively calculate prognostic values of individual variables under uncertainty. Conclusion. BNs are powerful and versatile tools for risk prediction and health outcomes research that can complement traditional statistical techniques and are particularly useful in domains in which information is uncertain or incomplete and in which interpretability is important, such as medicine.
引用
收藏
页码:1032 / 1044
页数:13
相关论文
共 50 条
  • [41] Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning
    Wang, Chen
    Zhao, Yue
    Jin, Bingyu
    Gan, Xuedong
    Liang, Bin
    Xiang, Yang
    Zhang, Xiaokang
    Lu, Zhibing
    Zheng, Fang
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [42] Machine Learning Application to Predict the Risk of Coronary Artery Atherosclerosis
    Nikan, Soodeh
    Gwadry-Sridhar, Femida
    Bauer, Michael
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 34 - 39
  • [43] Machine Learning Identifies New Predictors on Restenosis Risk after Coronary Artery Stenting in 10,004 Patients with Surveillance Angiography
    Gueldener, Ulrich
    Kessler, Thorsten
    von Scheidt, Moritz
    Hawe, Johann S.
    Gerhard, Beatrix
    Maier, Dieter
    Lachmann, Mark
    Laugwitz, Karl-Ludwig
    Cassese, Salvatore
    Schoemig, Albert W.
    Kastrati, Adnan
    Schunkert, Heribert
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (08)
  • [44] Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
    Arsanjani, Reza
    Xu, Yuan
    Dey, Damini
    Vahistha, Vishal
    Shalev, Aryeh
    Nakanishi, Rine
    Hayes, Sean
    Fish, Mathews
    Berman, Daniel
    Germano, Guido
    Slomka, Piotr J.
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2013, 20 (04) : 553 - 562
  • [45] Detection of coronary artery disease in patients with chest pain: A machine learning model based on magnetocardiography parameters
    Huang, Xiao
    Chen, Pengfei
    Tang, Fakuan
    Hua, Ning
    [J]. CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2021, 78 (03) : 227 - 236
  • [46] Machine learning-aided risk stratification system for the prediction o coronary artery disease
    Li, Dan
    Xiong, Guanglian
    Zeng, Hesong
    Zhou, Qiang
    Jiang, Jiangang
    Guo, Xiaomei
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 326 : 30 - 34
  • [47] Detection of coronary artery disease using machine learning algorithms
    Vashistha, Kriti
    Bokhare, Anuja
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 43 (02) : 83 - 91
  • [48] An Optimized Machine Learning Approach for Coronary Artery Disease Detection
    Savita
    Rani, Geeta
    Mittal, Apeksha
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (01) : 66 - 76
  • [49] Personalized Treatment for Coronary Artery Disease: A Machine Learning Approach
    Bertsimas, Dimitris
    Orfanoudaki, Agni
    Weiner, Rory
    [J]. CIRCULATION, 2018, 138
  • [50] Classification of coronary artery disease using radial artery pulse wave analysis via machine learning
    Lyu, Yi
    Wu, Hai-Mei
    Yan, Hai-Xia
    Guo, Rui
    Xiong, Yu-Jie
    Chen, Rui
    Huang, Wen-Yue
    Hong, Jing
    Lyu, Rong
    Wang, Yi-Qin
    Xu, Jin
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)