Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

被引:7
作者
Dilna, N. [1 ]
Ronto, A. [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[2] Acad Sci Czech Republic, Inst Math, CZ-61662 Brno, Czech Republic
关键词
non-linear boundary-value problem; functional differential equation; non-local condition; unique solvability; differential inequality;
D O I
10.2478/s12175-010-0015-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
General conditions for the unique solvability of a non-linear nonlocal boundary-value problem for systems of non-linear functional differential equations are obtained.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 2004, UKRAIN MAT ZH
[2]  
Azbelev N., 1995, Advanced Series in Mathematical Science and Engineering, V3
[3]   Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations [J].
Bravyi, E ;
Hakl, R ;
Lomtatidze, A .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (03) :513-530
[4]  
Dilna N, 2008, MATH BOHEM, V133, P435
[5]  
DILNA N, MEM DIFFERE IN PRESS
[6]  
DILNA NZ, 2008, UKR MATH J, V60, P167
[7]   On a boundary value problem for first-order scalar functional differential equations [J].
Hakl, R ;
Lomtatidze, A ;
Puza, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (3-4) :391-405
[8]  
KRASNOSELSKII M. A., 1984, Geometrical Methods of Nonlinear Analysis
[9]  
Krasnoselskii M. A., 1974, DOKL AKAD NAUK TADZH, V17, P12
[10]  
Krasnoselskii MA., 1964, POSITIVE SOLUTIONS O