On counting subring-submodules of free modules over finite commutative frobenius rings

被引:2
作者
Bandi, Ramakrishna [1 ]
Tabue, Alexandre Fotue [2 ]
Martinez-Moro, Edgar [3 ]
机构
[1] Int Inst Informat Technol Naya Raipur, Dept Math, Naya Raipur, Chhattisgarh, India
[2] Univ Yaounde I, Res & Training Unit Doctorate Math, Comp Sci & Applicat, Yaounde, Cameroon
[3] Univ Valladolid, Inst Math, Valladolid, Spain
关键词
Finite commutative Frobenius ring; Galois extension; Trace map; Module; Chinese remainder theorem; CODES;
D O I
10.1007/s10623-017-0446-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let be a finite commutative Frobenius ring and a Galois extension of of degree m. For positive integers k and , we determine the number of free -submodules of with the property and . This corrects the wrong result (Bill in Linear Algebr Appl 22:223-233, 1978, Theorem 6) which was given in the language of codes over finite fields.
引用
收藏
页码:2247 / 2254
页数:8
相关论文
共 13 条
[1]  
DeMeyer Frank., 1971, Lecture Notes in Mathematics
[2]   On the intersection of two subgeometries of PG(n,q) [J].
Donati, Giorgio ;
Durante, Nicola .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 46 (03) :261-267
[3]   Counting codes over rings [J].
Dougherty, Steven T. ;
Salturk, Esengul .
DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) :151-165
[4]   Higher weights for codes over rings [J].
Dougherty, Steven T. ;
Han, Sunghyu ;
Liu, Hongwei .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (02) :113-135
[5]   Independence of vectors in codes over rings [J].
Dougherty, Steven T. ;
Liu, Hongwei .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 51 (01) :55-68
[6]   MDS codes over finite principal ideal rings [J].
Dougherty, Steven T. ;
Kim, Jon-Lark ;
Kulosman, Hamid .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (01) :77-92
[7]  
Endo Shizuo., 1967, OSAKA MATH J, V4, P233
[8]  
Fotue Tabue A., 2016, ARXIV160201242
[9]   The dimension of subcode-subfields of shortened generalized Reed-Solomon codes [J].
Hernando, Fernando ;
Marshall, Kyle ;
O'Sullivan, Michael E. .
DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (01) :131-142
[10]   LINEAR-ALGEBRA PROBLEM FROM ALGEBRAIC CODING THEORY [J].
LYLE, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 22 (DEC) :223-233