Inter-comparison of radon detectors for one to four week measurement periods

被引:12
作者
Gunning, G. A. [1 ]
Murray, M. [2 ]
Long, S. C. [2 ]
Foley, M. J. [3 ]
Finch, E. C. [1 ]
机构
[1] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland
[2] Environm Protect Agcy, Off Radiol Protect, 3 Clonskeagh Sq, Dublin 14, Ireland
[3] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland
关键词
radon; detector; continuous monitor; CR-39; SEASONAL CORRECTION FACTORS; UNCERTAINTIES; IRELAND; CR-39;
D O I
10.1088/0952-4746/36/1/104
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seven different types of radon detectors (Atmos 12 dpx, RAD7, RStone, Sun Nuclear 1028, Ramon 2.2, Canary and CR-39) were compared for exposure periods of 1, 2, 3 and 4 weeks. The comparison was conducted under two conditions: (a) in a purpose-built radon chamber with an average radon concentration of 2560 Bq m(-3) (b) in a home environment with a radon concentration of 57 Bq m-3, in both cases measured by the reference detector (Atmos 12 dpx) with a +/- 10% uncertainty range. In (a) 5 out of 8 detectors recorded radon concentrations within the Atmos uncertainty range and all detectors recorded within +/- 15%; in (b) 3 out of 9 detectors recorded within the Atmos uncertainty range and 6 out of 9 measured within +/- 20%, for a 4 week measurement. The results from this study show that radon surveys can be conducted for shorter periods than the recommended 3 months where a rapid indication is needed of whether the radon concentration is above the reference level, such as when assessing the concentration during and after remediation work.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 1993, ICRP PUBLICATION, Vs65
[2]  
ATMOS 12 DPX, 2015, RAD GAS MON
[3]   Estimation of seasonal correction factors through Fourier decomposition analysis-a new model for indoor radon levels in Irish homes [J].
Burke, Orlaith ;
Long, Stephanie ;
Murphy, Patrick ;
Organo, Catherine ;
Fenton, David ;
Colgan, Peter Anthony .
JOURNAL OF RADIOLOGICAL PROTECTION, 2010, 30 (03) :433-443
[4]  
Butterweck G, 2002, RADIAT PROT DOSIM, V98, P219, DOI 10.1093/oxfordjournals.rpd.a006712
[5]  
Corentium AS, 2015, CAN DIG RAD MON US M
[6]   Functional test of a Radon sensor based on a high-resistivity-silicon BJT detector [J].
Dalla Betta, G. F. ;
Tyzhnevyi, V. ;
Bosi, A. ;
Bonaiuti, M. ;
Angelini, C. ;
Batignani, G. ;
Bettarini, S. ;
Bosi, F. ;
Forti, F. ;
Giorgi, M. A. ;
Morsani, F. ;
Paoloni, E. ;
Rizzo, G. ;
Walsh, J. ;
Lusiani, A. ;
Ciolini, R. ;
Curzio, G. ;
D'Errico, F. ;
Del Gratta, A. ;
Bidinelli, L. ;
Rovati, L. ;
Saguatti, D. ;
Verzellesi, G. ;
Bosisio, L. ;
Rachevskaia, I. ;
Boscardin, M. ;
Giacomini, G. ;
Picciotto, A. ;
Piemonte, C. ;
Zorzi, N. ;
Calamosca, M. ;
Penzo, S. ;
Cardellini, F. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 718 :302-304
[7]  
Department of Environment Community and Local Government, 2014, NAT RAD CONTR STRAT
[8]  
Dubois G., 2005, An Overview of Radon Surveys in Europe
[9]  
Durridge Company Inc, 2015, RAD7 RAD DET US MAN
[10]  
GT Analytic SARL, 2015, RAM 2 2 MAN