Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors

被引:351
作者
Mackanic, David G. [1 ]
Yan, Xuzhou [2 ]
Zhang, Qiuhong [3 ]
Matsuhisa, Naoji [1 ,4 ]
Yu, Zhiao [1 ]
Jiang, Yuanwen [1 ]
Manika, Tuheen [1 ]
Lopez, Jeffrey [1 ]
Yan, Hongping [1 ]
Liu, Kai [5 ]
Chen, Xiaodong [4 ]
Cui, Yi [5 ,6 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Shriram Ctr, Dept Chem Engn, 443 Via Ortega,Room 307, Stanford, CA 94305 USA
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Dept Polymer Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices iFLEX, 50 Nanyang Ave, Singapore 639798, Singapore
[5] Stanford Univ, Dept Mat Sci & Engn, 476 Lomita Mall, Stanford, CA 94305 USA
[6] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
基金
美国国家卫生研究院; 日本学术振兴会; 美国国家科学基金会;
关键词
POLYMER ELECTROLYTE; MOLECULAR-WEIGHT; BATTERY; TEMPERATURE;
D O I
10.1038/s41467-019-13362-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m(-3)) and high ionic conductivity (1.2 x 10(-4) S cm(-1) at 25 degrees C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm(-2) that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.
引用
收藏
页数:11
相关论文
共 75 条
[1]   Polymer electrolytes-Some principles, cautions, and new practices [J].
Angell, C. Austen .
ELECTROCHIMICA ACTA, 2017, 250 :368-375
[2]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[3]   A stretchable and biodegradable strain and pressure sensor for orthopaedic application [J].
Boutry, Clementine M. ;
Kaizawa, Yukitoshi ;
Schroeder, Bob C. ;
Chortos, Alex ;
Legrand, Anais ;
Wang, Zhen ;
Chang, James ;
Fox, Paige ;
Bao, Zhenan .
NATURE ELECTRONICS, 2018, 1 (05) :314-321
[4]   Fully Integrated Design of a Stretchable Solid-State Lithium-Ion Full Battery [J].
Chen, Xi ;
Huang, Haijian ;
Pan, Long ;
Liu, Tian ;
Niederberger, Markus .
ADVANCED MATERIALS, 2019, 31 (43)
[5]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Bring on the body NET [J].
Chu, Bryant ;
Burnett, William ;
Chung, Jong Won ;
Bao, Zhenan .
NATURE, 2017, 549 (7672) :328-330
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Toughening stretchable fibers via serial fracturing of a metallic core [J].
Cooper, Christopher B. ;
Joshipura, Ishan D. ;
Parekh, Dishit P. ;
Norkett, Justin ;
Mailen, Russell ;
Miller, Victoria M. ;
Genzer, Jan ;
Dickey, Michael D. .
SCIENCE ADVANCES, 2019, 5 (02)
[9]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[10]   The Compensation Effect in the Vogel-Tammann-Fulcher (VTF) Equation for Polymer-Based Electrolytes [J].
Diederichsen, Kyle M. ;
Buss, Hilda G. ;
McCloskey, Bryan D. .
MACROMOLECULES, 2017, 50 (10) :3832-3841