共 75 条
Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
被引:351
作者:
Mackanic, David G.
[1
]
Yan, Xuzhou
[2
]
Zhang, Qiuhong
[3
]
Matsuhisa, Naoji
[1
,4
]
Yu, Zhiao
[1
]
Jiang, Yuanwen
[1
]
Manika, Tuheen
[1
]
Lopez, Jeffrey
[1
]
Yan, Hongping
[1
]
Liu, Kai
[5
]
Chen, Xiaodong
[4
]
Cui, Yi
[5
,6
]
Bao, Zhenan
[1
]
机构:
[1] Stanford Univ, Shriram Ctr, Dept Chem Engn, 443 Via Ortega,Room 307, Stanford, CA 94305 USA
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Dept Polymer Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices iFLEX, 50 Nanyang Ave, Singapore 639798, Singapore
[5] Stanford Univ, Dept Mat Sci & Engn, 476 Lomita Mall, Stanford, CA 94305 USA
[6] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
基金:
美国国家卫生研究院;
日本学术振兴会;
美国国家科学基金会;
关键词:
POLYMER ELECTROLYTE;
MOLECULAR-WEIGHT;
BATTERY;
TEMPERATURE;
D O I:
10.1038/s41467-019-13362-4
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m(-3)) and high ionic conductivity (1.2 x 10(-4) S cm(-1) at 25 degrees C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm(-2) that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.
引用
收藏
页数:11
相关论文