The Gross-Pitaevskii equation: Backlund transformations and admitted solutions

被引:1
|
作者
Carillo, Sandra [1 ,2 ]
Zullo, Federico [3 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Rome, Italy
[2] INFN, Sez Roma1 Gr 4, Math Methods NonLinear Phys, Rome, Italy
[3] Univ Brescia, DICATAM, Brescia, Italy
关键词
Nonlinear ordinary differential equations; Gross-Pitaevskii equation; Backlund transformations; Schwarzian derivative; 35A24; 49K15; 37K35; 35Q55; ERMAKOV;
D O I
10.1007/s11587-018-0422-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Backlund transformations are applied to study the Gross-Pitaevskii equation. Supported by previous results, a class of Backlund transformations admitted by this equation are constructed. Schwarzian derivative as well as its invariance properties turn out to represent a key tool in the present investigation. Examples and explicit solutions of the Gross-Pitaevskii equation are obtained.
引用
收藏
页码:503 / 512
页数:10
相关论文
共 50 条
  • [1] The Gross–Pitaevskii equation: Bäcklund transformations and admitted solutions
    Sandra Carillo
    Federico Zullo
    Ricerche di Matematica, 2019, 68 : 503 - 512
  • [2] Stability of the solutions of the Gross-Pitaevskii equation
    Jackson, AD
    Kavoulakis, GM
    Lundh, E
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [3] GENERALIZED SOLUTIONS TO THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1487 - 1498
  • [4] Solutions of the Gross-Pitaevskii equation in two dimensions
    Lee, MD
    Morgan, SA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (13) : 3009 - 3017
  • [5] Formal analytical solutions for the Gross-Pitaevskii equation
    Trallero-Giner, C.
    Drake-Perez, Julio C.
    Lopez-Richard, V.
    Birman, Joseph L.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) : 2342 - 2352
  • [6] Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
    Rybin, AV
    Varzugin, GG
    Lindberg, M
    Timonen, J
    Bullough, RK
    PHYSICAL REVIEW E, 2000, 62 (05): : 6224 - 6228
  • [7] Dynamic study for numerical solutions of the Gross-Pitaevskii equation
    Department of Science, Liaoning Technical University, Fuxin 123000, China
    不详
    Jisuan Wuli, 2006, 4 (483-488):
  • [8] Stationary solutions of the Gross-Pitaevskii equation with linear counterpart
    D'Agosta, R
    Malomed, BA
    Presilla, C
    PHYSICS LETTERS A, 2000, 275 (5-6) : 424 - 434
  • [9] Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates
    Borisov, A. V.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2015, 57 (09) : 1201 - 1209
  • [10] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation
    Masaki, Satoshi
    Miyazaki, Hayato
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) : 743 - 761