Preservation of Surface Conductivity and Dielectric Loss Tangent in Large-Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations

被引:25
作者
Rigosi, Albert F. [1 ]
Glavin, Nicholas R. [2 ]
Liu, Chieh-, I [1 ,3 ]
Yang, Yanfei [1 ,4 ]
Obrzut, Jan [1 ]
Hill, Heather M. [1 ]
Hu, Jiuning [1 ]
Lee, Hsin-Yen [1 ,5 ]
Walker, Angela R. Hight [1 ]
Richter, Curt A. [1 ]
Elmquist, Randolph E. [1 ]
Newell, David B. [1 ]
机构
[1] NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA
[2] US Air Force, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[3] Natl Taiwan Univ, Grad Inst Appl Phys, Taipei 10617, Taiwan
[4] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[5] Theiss Res, La Jolla, CA 92037 USA
关键词
HEXAGONAL-BORON-NITRIDE; RESISTANCE STANDARD; WAFER-SCALE; DEVICES; LAYER; PERFORMANCE; DEPOSITION;
D O I
10.1002/smll.201700452
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption. Experimental results are reported on the extraction of the surface conductivity and dielectric loss tangent from data taken with a noncontact resonance microwave cavity, assembled with an air-filled, standard R100 rectangular waveguide configuration. By using amorphous boron nitride (a-BN) as an encapsulation layer, stability of EG's electrical properties under ambient laboratory conditions is greatly improved. Moreover, samples are exposed to a variety of environmental and chemical conditions. Both thicknesses of a-BN encapsulation are sufficient to preserve surface conductivity and dielectric loss tangent to within 10% of its previously measured value, a result which has essential importance in the mass production of millimeter-scale graphene devices demonstrating electrical stability.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers [J].
Alaboson, Justice M. P. ;
Wang, Qing Hua ;
Emery, Jonathan D. ;
Lipson, Albert L. ;
Bedzyk, Michael J. ;
Elam, Jeffrey W. ;
Pellin, Michael J. ;
Hersam, Mark C. .
ACS NANO, 2011, 5 (06) :5223-5232
[2]  
[Anonymous], 2004, MICROWAVE ELECT MEAS
[3]  
[Anonymous], [No title captured]
[4]  
Botcher C. J. F., 1996, THEORY OF ELECTRIC P
[5]   Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale, High-Performance Devices [J].
Bresnehan, Michael S. ;
Hollander, Matthew J. ;
Wetherington, Maxwell ;
LaBella, Michael ;
Trumbull, Kathleen A. ;
Cavalero, Randal ;
Snyder, David W. ;
Robinson, Joshua A. .
ACS NANO, 2012, 6 (06) :5234-5241
[6]   Low-noise epitaxial graphene on SiC Hall effect element for commercial applications [J].
Ciuk, Tymoteusz ;
Petruk, Oleg ;
Kowalik, Andrzej ;
Jozwik, Iwona ;
Rychter, Andrzej ;
Szmidt, Jan ;
Strupinski, Wlodzimierz .
APPLIED PHYSICS LETTERS, 2016, 108 (22)
[7]   Controlling the Fermi Level in a Single-Layer Graphene QHE Device for Resistance Standard [J].
Fukuyama, Yasuhiro ;
Elmquist, Randolph E. ;
Huang, Lung-I ;
Yang, Yanfei ;
Liu, Fan-Hung ;
Kaneko, Nobu-hisa .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (06) :1451-1454
[8]   Epitaxial graphene surface preparation for atomic layer deposition of Al2O3 [J].
Garces, N. Y. ;
Wheeler, V. D. ;
Hite, J. K. ;
Jernigan, G. G. ;
Tedesco, J. L. ;
Nepal, Neeraj ;
Eddy, C. R., Jr. ;
Gaskill, D. K. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Amorphous Boron Nitride: A Universal, Ultrathin Dielectric For 2D Nanoelectronics [J].
Glavin, Nicholas R. ;
Muratore, Christopher ;
Jespersen, Michael L. ;
Hu, Jianjun ;
Hagerty, Phillip T. ;
Hilton, Al M. ;
Blake, Austin T. ;
Grabowski, Christopher A. ;
Durstock, Michael F. ;
McConney, Michael E. ;
Hilgefort, Drew M. ;
Fisher, Timothy S. ;
Voevodin, Andrey A. .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (16) :2640-2647