Normalized Laplacian Eigenvalues and Energy of Trees

被引:12
作者
Das, Kinkar Ch. [1 ]
Sun, Shaowei [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 03期
基金
新加坡国家研究基金会;
关键词
Tree; Normalized Laplacian matrix; Normalized Laplacian eigenvalues; Normalized Laplacian energy; RANDIC ENERGY; GRAPHS;
D O I
10.11650/tjm.20.2016.6668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with vertex set V(G) = {v(1), v(2),...,v(n)} and edge set E(G). For any vertex v(i) epsilon V(G), let d(i) denote the degree of v(i). The normalized Laplacian matrix of the graph G is the matrix L = (L-ij) given by [GRAPHICS] In this paper, we obtain some bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters and characterize the extremal trees. Utilizing these results we present some lower bounds on the normalized Laplacian energy (or Randie energy) of tree T and characterize trees for which the bound is attained.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 13 条
  • [1] [Anonymous], 1997, C BOARD MATH SCI
  • [2] Bondy J., 2008, GRADUATE TEXTS MATH
  • [3] Trees with 4 or 5 distinct normalized Laplacian eigenvalues
    Braga, Rodrigo O.
    Del-Vecchio, Renata R.
    Rodrigues, Virginia M.
    Trevisan, Vilinar
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 615 - 635
  • [4] Cavers M., 2010, PhD dissertation
  • [5] On the normalized Laplacian energy and general Randic index R_1 of graphs
    Cavers, Michael
    Fallat, Shaun
    Kirkland, Steve
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) : 172 - 190
  • [6] An interlacing result on normalized Laplacians
    Chen, GT
    Davis, G
    Hall, F
    Li, ZS
    Patel, K
    Stewart, M
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (02) : 353 - 361
  • [7] Das KC, 2015, ARS COMBINATORIA, V118, P143
  • [8] Das KC, 2015, MATCH-COMMUN MATH CO, V73, P81
  • [9] Das KC, 2014, MATCH-COMMUN MATH CO, V72, P227
  • [10] On Randic energy
    Gutman, Ivan
    Furtula, Boris
    Bozkurt, S. Burcu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 50 - 57