Notes on index of quantum integrability

被引:0
作者
Tian, Jia [1 ,2 ,3 ]
Hou, Jue [1 ,2 ]
Chen, Bin [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Sch Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr High Energy Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
关键词
integrability; quantum index; coset models;
D O I
10.1088/1572-9494/abe9aa
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum integrability index was proposed in Komatsu et al (2019 SciPost Phys. 7 065). It systematizes the Goldschmidt and Witten's operator counting argument (Goldschmidt and Witten 1980 Phys. Lett. B 91 392) by using the conformal symmetry. In this work we compute the quantum integrability indexes for the symmetric coset models SU(N) SO(N) and SO(2N) SO(N) x SO(N). The indexes of these theories are all non-positive except for the case of SO(4) SO(2) x SO(2). Moreover we extend the analysis to the theories with fermions and consider a concrete theory: the CPN model coupled with a massless Dirac fermion. We find that the indexes for this class of models are non-positive as well.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Integrability of the constrained rigid body
    Jaume Llibre
    Rafael Ramírez
    Natalia Sadovskaia
    Nonlinear Dynamics, 2013, 73 : 2273 - 2290
  • [42] On the integrability of hybrid Hamiltonian systems
    Lopez-Gordon, Asier
    Colombo, Leonardo J.
    IFAC PAPERSONLINE, 2024, 58 (06): : 83 - 88
  • [43] Unconditional integrability for dual actions
    Ruy Exel
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1999, 30 : 99 - 124
  • [44] Hamiltonicity and integrability of the Suslov problem
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2) : 104 - 116
  • [46] Integrability of the constrained rigid body
    Llibre, Jaume
    Ramirez, Rafael
    Sadovskaia, Natalia
    NONLINEAR DYNAMICS, 2013, 73 (04) : 2273 - 2290
  • [47] DIFFERENTIAL GALOIS THEORY AND INTEGRABILITY
    Maciejewski, Andrzej J.
    Przybylska, Maria
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (08) : 1357 - 1390
  • [48] On uniform integrability of random variables
    Majerek, D
    Nowak, W
    Zieba, W
    STATISTICS & PROBABILITY LETTERS, 2005, 74 (03) : 272 - 280
  • [49] Integrability tests for difference equations
    Hietarinta, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) : 4641 - 4650
  • [50] The concept of quasi-integrability
    Ferreira, Luiz. A.
    Luchini, G.
    Zakrzewski, Wojtek J.
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2013, 1562 : 43 - 49