Notes on index of quantum integrability

被引:0
|
作者
Tian, Jia [1 ,2 ,3 ]
Hou, Jue [1 ,2 ]
Chen, Bin [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Sch Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr High Energy Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
关键词
integrability; quantum index; coset models;
D O I
10.1088/1572-9494/abe9aa
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum integrability index was proposed in Komatsu et al (2019 SciPost Phys. 7 065). It systematizes the Goldschmidt and Witten's operator counting argument (Goldschmidt and Witten 1980 Phys. Lett. B 91 392) by using the conformal symmetry. In this work we compute the quantum integrability indexes for the symmetric coset models SU(N) SO(N) and SO(2N) SO(N) x SO(N). The indexes of these theories are all non-positive except for the case of SO(4) SO(2) x SO(2). Moreover we extend the analysis to the theories with fermions and consider a concrete theory: the CPN model coupled with a massless Dirac fermion. We find that the indexes for this class of models are non-positive as well.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Integrability, entropy and quantum computation
    Krishnamurthy, EV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (07): : 1205 - 1228
  • [2] Integrability and quantum parallel computational complexity
    Krishnamurthy, EV
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL I AND II, 1999, : 91 - 97
  • [3] Integrability, neural and quantum computational complexity
    Krishnamurthy, EV
    Krishnamurthy, V
    WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 1, PROCEEDINGS: ISAS '98, 1998, : 547 - 554
  • [4] Quantum Integrability in Systems with Finite Number of Levels
    Yuzbashyan, Emil A.
    Shastry, B. Sriram
    JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (04) : 704 - 721
  • [5] Quantum Integrability in Systems with Finite Number of Levels
    Emil A. Yuzbashyan
    B. Sriram Shastry
    Journal of Statistical Physics, 2013, 150 : 704 - 721
  • [6] Review of AdS/CFT Integrability, Chapter III.7: Hirota Dynamics for Quantum Integrability
    Nikolay Gromov
    Vladimir Kazakov
    Letters in Mathematical Physics, 2012, 99 : 321 - 347
  • [7] Review of AdS/CFT Integrability, Chapter III.7: Hirota Dynamics for Quantum Integrability
    Gromov, Nikolay
    Kazakov, Vladimir
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 99 (1-3) : 321 - 347
  • [8] Classical and quantum integrability of Hamiltonians without scattering states
    Enciso, A.
    Peralta-Salas, D.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 148 (02) : 1086 - 1099
  • [9] Quantum NOT operation and integrability in two-level systems
    Angelo, R. M.
    Wreszinski, W. F.
    ANNALS OF PHYSICS, 2007, 322 (04) : 769 - 798
  • [10] Classical and quantum integrability for a class of potentials in two dimensions
    Hiranwal, R
    Mishra, SC
    Mishra, V
    ANNALS OF PHYSICS, 2004, 309 (02) : 390 - 420