Affine semigroup rings that are complete intersections

被引:37
作者
Fischer, KG [1 ]
Morris, W [1 ]
Shapiro, J [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
D O I
10.1090/S0002-9939-97-03920-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a result concerning the structure of affine semigroup rings that are complete intersections. It generalizes to arbitrary dimensions earlier results for semigroups of dimension less than four. The proof depends on a decomposition theorem for mixed dominating matrices.
引用
收藏
页码:3137 / 3145
页数:9
相关论文
共 10 条
[1]  
Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
[2]   RECTANGULAR L-MATRICES [J].
BRUALDI, RA ;
CHAVEY, KL ;
SHADER, BL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 196 :37-61
[3]  
DELORME C, 1976, ANN SCI ECOLE NORM S, V9, P145
[4]  
FISCHER KG, 1994, LECT NOTES PURE APPL, V151, P111
[5]   Mixed matrices and binomial ideals [J].
Fischer, KG ;
Shapiro, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 113 (01) :39-54
[6]   ADDRESSING PROBLEM FOR LOOP SWITCHING [J].
GRAHAM, RL ;
POLLAK, HO .
BELL SYSTEM TECHNICAL JOURNAL, 1971, 50 (08) :2495-+
[7]   GENERATORS AND RELATIONS OF ABELIAN SEMIGROUPS AND SEMIGROUP RINGS [J].
HERZOG, J .
MANUSCRIPTA MATHEMATICA, 1970, 3 (02) :175-&
[9]   On complete intersection affine semigroups [J].
Rosales, JC ;
GarciaSanchez, PA .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) :5395-5412
[10]  
SCHRIJVER A, 1986, THEROY LINEAR INTEGE