Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice

被引:41
作者
Wang, Xinyu [1 ]
Wang, Man [2 ]
Hong, Yang [3 ]
Wang, Zongrong [4 ]
Zhang, Jingchao [5 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[2] Wuhan Second Ship Design & Res Inst, Wuhan 430064, Hubei, Peoples R China
[3] Univ Nebraska Lincoln, Dept Chem, Lincoln, NE 68588 USA
[4] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Univ Nebraska Lincoln, Holland Comp Ctr, Lincoln, NE 68588 USA
关键词
THERMAL-CONDUCTIVITY; BAND-GAP; DYNAMICS; C2N; MEMBRANE;
D O I
10.1039/c7cp04219a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transition between coherent and incoherent phonon transport in a graphene (GRA) and nitrogenated holey graphene (C2N) superlattice is investigated by non-equilibrium molecular dynamics (NEMD) simulation. We find that the thermal conductivity of the GRA-C2N superlattice is much lower than those of graphene and C2N, and exhibits a positive correlation with the system length. Owing to three mechanisms, i. e., phonon wave interference, phonon confinement and phonon interface scattering, the calculated thermal conductivity shows a decreasing trend at small period length scales and gradually increases at large period length scales. The coherence length of the superlattice at 300 K is 4.43 nm, which is independent of the total length. In addition, the effects of temperature and uniaxial tensile strain on phonon transport are investigated. At 100 K, the coherent phonons play a more dominating role in the superlattice and the responding coherence length is enlarged to 7.38 nm. On the other hand, tensile strain can effectively reduce the thermal conductivity, which results from the phonon softening.
引用
收藏
页码:24240 / 24248
页数:9
相关论文
共 68 条
[1]   Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor [J].
Algara-Siller, Gerardo ;
Severin, Nikolai ;
Chong, Samantha Y. ;
Bjorkman, Torbjorn ;
Palgrave, Robert G. ;
Laybourn, Andrea ;
Antonietti, Markus ;
Khimyak, Yaroslav Z. ;
Krasheninnikov, Arkady V. ;
Rabe, Juergen P. ;
Kaiser, Ute ;
Cooper, Andrew I. ;
Thomas, Arne ;
Bojdys, Michael J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (29) :7450-7455
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[4]   Thermal conductivity and heat transfer in superlattices [J].
Chen, G ;
Neagu, M .
APPLIED PHYSICS LETTERS, 1997, 71 (19) :2761-2763
[5]   Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping [J].
Chen, Shanshan ;
Li, Qiongyu ;
Zhang, Qimin ;
Qu, Yan ;
Ji, Hengxing ;
Ruoff, Rodney S. ;
Cai, Weiwei .
NANOTECHNOLOGY, 2012, 23 (36)
[6]   Phonon wave interference in graphene and boron nitride superlattice [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Tang, Li-Ming ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2016, 109 (02)
[7]   Minimum superlattice thermal conductivity from molecular dynamics [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Ni, ZH ;
Chen, MH .
PHYSICAL REVIEW B, 2005, 72 (17)
[8]   Thermal conductivity measurement of InGaAs/InGaAsP superlattice thin films [J].
Chen Zhen ;
Yang Juekuan ;
Zhuang Ping ;
Chen Minhua ;
Zhu Jian ;
Chen Yunfei .
CHINESE SCIENCE BULLETIN, 2006, 51 (23) :2931-2936
[9]   Thermal Conductivity of Graphene Wrinkles: A Molecular Dynamics Simulation [J].
Cui, Liu ;
Du, Xiaoze ;
Wei, Gaosheng ;
Feng, Yanhui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (41) :23807-23812
[10]   COMPUTER SIMULATION OF LATTICE DYNAMICS OF SOLIDS [J].
DICKEY, JM ;
PASKIN, A .
PHYSICAL REVIEW, 1969, 188 (03) :1407-+