The accepting power of finite automata over groups

被引:0
作者
Mitrana, V [1 ]
Stiebe, R [1 ]
机构
[1] Univ Bucharest, Fac Math, Bucharest 70109, Romania
来源
NEW TRENDS IN FORMAL LANGUAGES | 1997年 / 1218卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Some results from [2], [5], [6] are generalized for finite automata over arbitrary groups. The accepting power is smaller when abelian groups are considered, in comparison with the non-abelian groups. We prove that this is due to the commutativity. Each language accepted by a finite automaton over an abelian group is actually a unordered vector language. Finally, deterministic finite automata over groups are investigated.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 8 条
  • [1] Dassow J., 2012, Regulated Rewriting in Formal Language Theory
  • [2] DASSOW J, 1996, FINITE AUTOMATA FREE
  • [3] GINSBURG S, 1969, MEM AM MATH SOC, V87, P1
  • [4] Ginsburg S., 1975, ALGEBRAIC AUTOMATA T
  • [5] Greibach S. A., 1978, Theoretical Computer Science, V7, P311, DOI 10.1016/0304-3975(78)90020-8
  • [6] Ibarra O. H., 1976, Theoretical Computer Science, V2, P271, DOI 10.1016/0304-3975(76)90081-5
  • [7] Paun Gh., 1980, REV ROUMAINE MATH PU, V6, P911
  • [8] Rotman J. J., 1995, Grad. Texts in Math., V148