REPRESENTATIONS OF FINITE-DIMENSIONAL QUOTIENT ALGEBRAS OF THE 3-STRING BRAID GROUP

被引:0
作者
Pyatov, Pavel [1 ,2 ]
Trofimova, Anastasia [1 ,3 ]
机构
[1] Natl Res Univ, Higher Sch Econ, 20 Myasnitskaya St, Moscow 101000, Russia
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[3] Skolkovo Inst Sci & Technol, Ctr Adv Studies, Moscow, Russia
关键词
Braid group; irreducible representations; semisimplicity; COMPLEX REFLECTION GROUPS; FREENESS CONJECTURE; HECKE ALGEBRAS;
D O I
10.17323/1609-4514-2021-21-2-427-442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quotients of the group algebra of the 3-string braid group B-3 by p-th order generic polynomial relations on the elementary braids. If p = 2, 3, 4, 5, these quotient algebras are finite dimensional. We give semisimplicity criteria for these algebras and present explicit formulas for all their irreducible representations.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 24 条
[1]  
Albeverio S., ARXIV08032778MATH
[2]  
[Anonymous], 1959, P 4 CAN MATH C BANFF
[3]   The BMM symmetrising trace conjecture for groups G4, G5, G6, G7, G8 [J].
Boura, Christina ;
Chavli, Eirini ;
Chlouveraki, Maria ;
Karvounis, Konstantinos .
JOURNAL OF SYMBOLIC COMPUTATION, 2020, 96 :62-84
[4]  
Broue M, 1998, J REINE ANGEW MATH, V500, P127
[5]  
Broue M., 1995, REPRESENTATIONS GROU, P1
[6]   Decomposition Matrices for the Generic Hecke Algebras on 3 Strands in Characteristic 0 [J].
Chavli, Eirini .
ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (03) :1001-1030
[7]   The BMR freeness conjecture for the tetrahedral and octahedral families [J].
Chavli, Eirini .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) :386-464
[8]   Universal deformations of the finite quotients of the braid group on 3 strands [J].
Chavli, Eirini .
JOURNAL OF ALGEBRA, 2016, 459 :238-271
[9]   ON THE ALGEBRAICAL BRAID GROUP [J].
CHOW, WL .
ANNALS OF MATHEMATICS, 1948, 49 (03) :654-658
[10]  
Curtis C.W., 1987, PURE APPL MATH