In our recent study (Fu et al., 2021), 70 wt% 2-ethylhexan-1-amine (EHA) + 30 wt% diglyme was proven to be a promising system for carbon dioxide (CO2) absorption. In this work, the capture performance of 15 kPa CO2 in 70 wt% EHA + (30 or 25 or 20) wt% diglyme solution was investigated. The evolution of solution composition during the capture process was identified. The time-dependent absorption and desorption capacities were accurately correlated by using the modified Avrami model. After 90 min of absorption, the proposed sorbents maintained relatively low viscosities (<32.07 mPa s) and had much lower heat capacities than the aqueous 30 wt% ethanolamine (MEA). The CO2 desorption capacities of the sorbents containing 0 wt%, 5 wt% and 10 wt% water were higher than that of the aqueous 30 wt% MEA by 134.1%, 123.6% and 91.7%, respectively. The regeneration efficiency of the sorbents containing 0 wt%, 5 wt % and 10 wt% water was 92.1%, 87.9% and 83.8%, respectively, in the 5th absorption (313 K) - desorption (373 K) cycle. Furthermore, it is encouraging to note that the energy consumption for CO2 desorption of proposed sorbents was below 20% of that of the aqueous 30 wt% MEA. (c) 2021 Elsevier Ltd. All rights reserved.