共 88 条
Metal and Counteranion Nuclearity Effects in Organoscandium-Catalyzed Isoprene Polymerization and Copolymerization
被引:27
作者:
Chen, Jiazhen
[1
]
Gao, Yanshan
[1
]
Xiong, Shuoyan
[1
,2
]
Delferro, Massimiliano
[1
,3
]
Lohr, Tracy L.
[1
]
Marks, Tobin J.
[1
]
机构:
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Sci & Technol China, Key Lab Soft Matter Chem, Dept Polymer Sci & Engn, Hefei 230026, Anhui, Peoples R China
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
基金:
美国国家科学基金会;
关键词:
scandium;
ion pairing nuclearity effects;
isoprene polymerization;
bimetallic catalysis;
BINUCLEAR ORGANOLANTHANIDE COMPLEXES;
SITE OLEFIN POLYMERIZATION;
LANTHANIDE ALKYL COMPLEXES;
ENCHAINMENT COOPERATIVITY;
COMONOMER ENCHAINMENT;
LIGANDS SYNTHESIS;
POLAR MONOMERS;
SYNDIOSPECIFIC COPOLYMERIZATION;
CARBOCATIONIC POLYMERIZATION;
ETHYLENE POLYMERIZATION;
D O I:
10.1021/acscatal.7b01621
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The binuclear organoscandium half-sandwich complexes (Me3SiCH2)(2)(THF)Sc[C5Me4-Si(CH3)(2)-(CH2) Si(CH3)(2)-C5Me4]Sc(CH2SiMe3)(2)(THF) (n = 0, Sc-C-0-Sc; n = 2, Sc-C-2-Sc) and monometallic C5Me4SiMe3Sc-(CH2SiMe3)(2)(THF) (Sc1) were prepared and fully characterized by conventional spectroscopic, analytical, and diffraction techniques. These complexes are active catalysts for isoprene polymerization and ethylene/isoprene copolymerization upon activation by the co-catalysts trityl perfluoroarylborate (Ph3C+)B(C6F5)(4)(-) (B-1) and trityl bisperfluoroarylborate (Ph3C+)(2)[1,4-(C6F5)(3)BC(6)F(4)13(C6F5)(3)](2-) (B-2). Marked catalyst and co-catalyst nuclearity effects on product polymer microstructure are achieved in isoprene polymerization. Thus, the percentage of cis-1,4- units in the polyisoprene products increases from 24% (Sc1) to 32% (Sc-C-2-Sc) to 48% (Sc-Co-Sc) as the catalyst nuclearity increases and the Sc center dot center dot center dot Sc distance contracts. The binuclear catalysts regulate the isometric unit distributions and favor 3,4-3,4-3,4 blocks. Furthermore, the percentage of polyisoprene trans-1,4- units increases 5 times when binuclear co-catalyst (B-2) is used, in comparison to B-1. In ethylene/isoprene copolymerizations, the binuclear catalysts produce polymers with higher molecular weights (M = (3.4-6.9) X 10(4); polydispersity of D = 1.4-2.0) and with comparable isoprene enchainment selectivity versus Scl under identical reaction conditions. However, isoprene incorporation is curiously reduced by 50% when B-2 is used versus B1. These results highlight the importance of both ion pairing and imposed nuclearity in these polymerizations, and these results indicate that both catalyst and co-catalyst nuclearities can be used to access specific polyisoprene polymer/copolymer microstructures.
引用
收藏
页码:5214 / 5219
页数:6
相关论文