A Learning-Based AoA Estimation Method for Device-Free Localization

被引:10
|
作者
Hong, Ke [1 ,2 ]
Wang, Tianyu [1 ,2 ]
Liu, Junchen [1 ,2 ]
Wang, Yu [1 ,2 ]
Shen, Yuan [1 ,2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Location awareness; Feature extraction; Learning systems; Channel estimation; Training; Standards; Device-free localization (DFL); ultra-wide bandwidth; angle-of-arrival (AoA); machine learning;
D O I
10.1109/LCOMM.2022.3158837
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Device-free localization (DFL), an important aspect in integrated sensing and communication, can be achieved through exploiting multipath components in ultra-wide bandwidth systems. However, incorrect identification of multipath components in the channel impulse responses will lead to large angle-of-arrival (AoA) estimation errors and subsequently poor localization performance. This letter proposes a learning-based AoA estimation method to improve the DFL accuracy. In the proposed method, we first design a classifier to identify the multipath components and then exploit the phase-difference-of-arrival to mitigate the AoA estimation error through a multilayer perceptron. Our learning-based method is validated using the datasets collected by ultra-wide bandwidth arrays, which significantly outperforms conventional methods in terms of AoA estimation and localization performance.
引用
收藏
页码:1264 / 1267
页数:4
相关论文
共 50 条
  • [31] C-MEL: Consensus-Based Multiple Ensemble Learning for Indoor Device-Free Localization Through Fingerprinting
    Suroso, Dwi Joko
    Adiyatma, Farid Yuli Martin
    IEEE ACCESS, 2024, 12 : 166381 - 166392
  • [32] Signal Eigenvector-Based Device-Free Passive Localization Using Array Sensor
    Hong, Jihoon
    Ohtsuki, Tomoaki
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2015, 64 (04) : 1354 - 1363
  • [33] Multipath-RTI: Millimeter-Wave Radio Based Device-Free Localization
    Ikegami, Togo
    Kim, Minseok
    Miyake, Yuto
    Tsukada, Hibiki
    IEEE ACCESS, 2024, 12 : 42042 - 42054
  • [34] Block-Sparse Coding-Based Machine Learning Approach for Dependable Device-Free Localization in IoT Environment
    Zhao, Lingjun
    Huang, Huakun
    Su, Chunhua
    Ding, Shuxue
    Huang, Huawei
    Tan, Zhiyuan
    Li, Zhenni
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) : 3211 - 3223
  • [35] Variance-Constrained Local–Global Modeling for Device-Free Localization Under Uncertainties
    Zhang, Jie
    Li, Yanjiao
    Li, Qing
    Xiao, Wendong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 5229 - 5240
  • [36] Device-Free Multitarget Localization With Weighted Intersection Multidimensional Feature for Passive UHF RFID
    Fu, Haoyang
    Ma, Yongtao
    Gong, Xiaolin
    Zhang, Xiaoman
    Wang, Bobo
    Ning, Wanru
    Liang, Xiuyan
    IEEE SENSORS JOURNAL, 2022, 22 (07) : 7300 - 7310
  • [37] A Training-Free Multipath Enhancement (TFME-RTI) Method for Device-Free Multi-Target Localization
    Zhang, Xiaoman
    Ma, Yongtao
    Gong, Xiaolin
    Fu, Haoyang
    Wang, Bobo
    Ning, Wanru
    Liang, Xiuyan
    IEEE SENSORS JOURNAL, 2022, 22 (07) : 7399 - 7410
  • [38] Ultrasonic Device-Free Localization System Using Orthogonal Chirp-Based Multistatic Sonar
    Garcia-Requejo, Alejandro
    Perez-Rubio, M. Carmen
    Hernandez, Alvaro
    Wright, William M. D.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [39] A Low Complexity Learning-Based Channel Estimation for OFDM Systems With Online Training
    Mei, Kai
    Liu, Jun
    Zhang, Xiaoying
    Cao, Kuo
    Rajatheva, Nandana
    Wei, Jibo
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6722 - 6733
  • [40] Exploiting AoA Estimation Accuracy for Indoor Localization: A Weighted AoA-Based Approach
    Zheng, Yang
    Sheng, Min
    Liu, Junyu
    Li, Jiandong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (01) : 65 - 68