A one-for-all strategy of polyimide coating layer for resolving the comprehensive issues of phosphorus anode

被引:25
作者
Han, Muyao [1 ]
Zhang, Shaojie [1 ]
Cao, Yu [1 ]
Han, Chengyu [1 ]
Li, Xu [1 ]
Zhang, Yiming [1 ]
Yang, Zhanxu [2 ]
Sun, Jie [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300350, Peoples R China
[2] Liaoning Petrochem Univ, Sch Petrochem Engn, 1 West Dandong Rd, Fushun 113001, Liaoning, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 70卷
基金
中国国家自然科学基金;
关键词
Phosphorus anode; Polyimide; Lithium-ion batteries; Surface coating; HIGH-PERFORMANCE ANODES; RED PHOSPHORUS; BLACK PHOSPHORUS; MESOPOROUS CARBON; ION BATTERIES; HIGH-CAPACITY; LITHIUM; COMPOSITE;
D O I
10.1016/j.jechem.2022.02.035
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Phosphorus is a promising anode with high capacity (2596 mAh g(-1) and 6075 similar to 6924 mAh cm(-3)), low lithium-ion diffusion barrier (0.08 eV), and appropriate lithiation potential (similar to 0.7 V vs Li+/Li). However, it faces the problems of huge volume expansion (similar to 300%), low electronic conductivity (10(-14)similar to 10(2) S cm(-1)), soluble intermediates (lithium polyphosphides, Li(x)Ps), degradation in air, and low thermal stabil-ity. In this work, phosphorus/carbon nanotube composites were coated with a polyimide layer, which plays the roles of a buffer layer to relieve the volume expansion of phosphorus, an obstruct layer to con -fine Li(x)Ps, an inert layer to prevent the degradation of phosphorus in air, a heat resistant layer to improve the thermal stability of the anode. The resulting composites (P/CNT@PI) display high capacity retention of 798.1 mAh g(-1) after 150 cycles at 1 A g(-1), achieving 17 times as much as the control sample (P/CNT).(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:276 / 282
页数:7
相关论文
共 39 条
[1]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[2]  
Corbridge D.E.C., 2013, PHOSPHORUS CHEM BIOC, V6th, P96
[3]  
Grey CP, 2017, NAT MATER, V16, P45, DOI [10.1038/nmat4777, 10.1038/NMAT4777]
[4]   Mechanical properties of single-layer black phosphorus [J].
Jiang, Jin-Wu ;
Park, Harold S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (38)
[5]   Encapsulated Red Phosphorus in rGO-C3N4 Architecture as Extending-Life Anode Materials for Lithium-Ion Batteries [J].
Kong, Weiqiang ;
Yu, Jiayao ;
Shi, Xiaorong ;
Yin, Jinpeng ;
Yang, Haining ;
Wen, Zhongsheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (06)
[6]   Advanced metal sulfide anode for potassium ion batteries [J].
Li, Tao ;
Zhang, Qiang .
JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (02) :373-374
[7]   Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity [J].
Li, Weihan ;
Yang, Zhenzhong ;
Li, Minsi ;
Jiang, Yu ;
Wei, Xiang ;
Zhong, Xiongwu ;
Gu, Lin ;
Yu, Yan .
NANO LETTERS, 2016, 16 (03) :1546-1553
[8]   A Low-Strain Phosphate Cathode for High-Rate and Ultralong Cycle-Life Potassium-Ion Batteries [J].
Liao, Jiaying ;
Chen, Cailing ;
Hu, Qiao ;
Du, Yichen ;
He, Yanan ;
Xu, Yifan ;
Zhang, Zhuangzhuang ;
Zhou, Xiaosi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (48) :25575-25582
[9]   Advanced polyimide materials: Syntheses, physical properties and applications [J].
Liaw, Der-Jang ;
Wang, Kung-Li ;
Huang, Ying-Chi ;
Lee, Kueir-Rarn ;
Lai, Juin-Yih ;
Ha, Chang-Sik .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (07) :907-974
[10]   Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries [J].
Liu, Cheng ;
Han, Muyao ;
Cao, Yu ;
Chen, Long ;
Ren, Wencai ;
Zhou, Guangmin ;
Chen, Aibing ;
Sun, Jie .
ENERGY STORAGE MATERIALS, 2021, 37 :417-423