Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target

被引:68
作者
Cao, Lihua [1 ]
Gu, Yuqiu [2 ]
Zhao, Zongqing [2 ]
Cao, Leifeng [2 ]
Huang, Wenzhong [2 ]
Zhou, Weimin [2 ]
He, X. T. [1 ,3 ,4 ]
Yu, Wei [4 ,5 ]
Yu, M. Y. [4 ,6 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] China Acad Engn Phys, Laser Fus Res Ctr, Mianyang 621900, Peoples R China
[3] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[4] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[6] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany
关键词
light absorption; nanostructured materials; plasma heating by laser; plasma light propagation; plasma simulation; PLASMA; GENERATION; DENSITY;
D O I
10.1063/1.3360298
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two-dimensional particle-in-cell simulation shows that a target with subwavelength nanolayered front can reduce the reflection and increase the absorption of the energy of an intense short laser pulse. The electrons within the skin depth on the surfaces of the nanolayers are accelerated by JxB heating to relativistic velocities and ejected into the narrow vacuum spaces between the layers. They then propagate forward with most of the absorbed laser energy along the surfaces of the layers. Conversion of the laser energy into electron energy can be enhanced by optimizing the vacuum spacing between the nanolayers since the phase structure of the laser field in the target is modified. The effects of the layer width, length, and spacing on the energy conversion efficiency are investigated.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses [J].
Andreev, AA ;
Limpouch, J ;
Iskakov, AB ;
Nakano, H .
PHYSICAL REVIEW E, 2002, 65 (02) :1-026403
[2]   Heating of thin foils with a relativistic-intensity short-pulse laser [J].
Audebert, P ;
Shepherd, R ;
Fournier, KB ;
Peyrusse, O ;
Price, D ;
Lee, R ;
Springer, P ;
Gauthier, JC ;
Klein, L .
PHYSICAL REVIEW LETTERS, 2002, 89 (26)
[3]   Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths [J].
Bastiani, S ;
Rousse, A ;
Geindre, JP ;
Audebert, P ;
Quoix, C ;
Hamoniaux, G ;
Antonetti, A ;
Gauthier, JC .
PHYSICAL REVIEW E, 1997, 56 (06) :7179-7185
[4]  
Beg FN, 1997, PHYS PLASMAS, V4, P447, DOI 10.1063/1.872103
[5]   NOT-SO-RESONANT, RESONANT ABSORPTION [J].
BRUNEL, F .
PHYSICAL REVIEW LETTERS, 1987, 59 (01) :52-55
[6]   Particle simulation and electron heating effects in plasmas produced by laser pulse [J].
Cao, LH ;
Chang, WW ;
Yue, ZW .
PHYSICS OF PLASMAS, 1998, 5 (02) :499-502
[7]   Enhancement of energetic electrons and protons by cone guiding of laser light [J].
Chen, ZL ;
Kodama, R ;
Nakatsutsumi, M ;
Nakamura, H ;
Tampo, M ;
Tanaka, KA ;
Toyama, Y ;
Tsutsumi, T ;
Yabuuchi, T .
PHYSICAL REVIEW E, 2005, 71 (03)
[8]   2-DIMENSIONAL RELATIVISTIC SIMULATIONS OF RESONANCE-ABSORPTION [J].
ESTABROOK, KG ;
VALEO, EJ ;
KRUER, WL .
PHYSICS OF FLUIDS, 1975, 18 (09) :1151-1159
[9]   Femtosecond silicon Kα pulses from laser-produced plasmas [J].
Feurer, T. ;
Morak, A. ;
Uschmann, I. ;
Ziener, Ch. ;
Schwoerer, H. ;
Reich, Ch. ;
Gibbon, P. ;
Förster, E. ;
Sauerbrey, R. ;
Ortner, K. ;
Becker, C.R. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (01) :1-016412
[10]   EFFICIENT PRODUCTION OF FAST ELECTRONS FROM FEMTOSECOND LASER INTERACTION WITH SOLID TARGETS [J].
GIBBON, P .
PHYSICAL REVIEW LETTERS, 1994, 73 (05) :664-667