Radical rings with Engel conditions

被引:15
作者
Amberg, B [1 ]
Sysak, YP
机构
[1] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
[2] Natl Acad Sci Ukraine, Inst Math, UA-252601 Kiev, Ukraine
关键词
radical ring; adjoint group; Engel condition;
D O I
10.1006/jabr.2000.8370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An associative ring R without unity is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R degrees under the circle operation r circle s = r + s + rs on R. It is proved that, for a radical ring R, the group R degrees satisfies an n-Engel condition for some positive integer n if and only if R is m-Engel as a Lie ring for some positive integer In depending only on n, (C) 2000 Academic Press.
引用
收藏
页码:364 / 373
页数:10
相关论文
共 15 条
[1]   ON THE ADJOINT GROUP OF A RADICAL RING [J].
AMBERG, B ;
DICKENSCHIED, O .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03) :262-270
[2]   Subgroups of the adjoint group of a radical ring [J].
Amberg, B ;
Dickenschied, O ;
Sysak, YP .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (01) :3-15
[3]  
[Anonymous], 1961, ILLINOIS J MATH
[4]   THE NILPOTENCY OF THE RADICAL IN A FINITELY GENERATED PI RING [J].
BRAUN, A .
JOURNAL OF ALGEBRA, 1984, 89 (02) :375-396
[5]  
BURNS JM, 1997, NEUROSURG FOCUS, V2, P1
[6]  
DICKENSCHEID O, 1997, THESIS U MAINZ
[7]   On the adjoint group of some radical rings [J].
Dickenschied, O .
GLASGOW MATHEMATICAL JOURNAL, 1997, 39 :35-41
[8]   THE CENTERS OF A RADICAL RING [J].
DU, XK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02) :174-179
[9]  
JENNINGS SA, 1955, T ROY SOC CAN, V49, P31
[10]  
Kemer A. R., 1981, ALGEBR LOG+, V19, P157