Exact moduli space metrics for hyperbolic vortex polygons

被引:12
作者
Krusch, S. [1 ]
Speight, J. M. [2 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
[2] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
DYNAMICS; SCATTERING; VORTICES;
D O I
10.1063/1.3277189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Sigma(n,m), are spaces of C(n)-invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Sigma(n,m) are investigated, and it is found that Sigma(n,n-1) is isometric to the hyperbolic plane of curvature -(3 pi n)(-1). The geodesic flow on Sigma(n,m) and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ["The dynamics of Chern-Simons vortices," Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3277189]
引用
收藏
页数:13
相关论文
共 19 条
[1]   The dynamics of vortices on S2 near the Bradlow limit [J].
Baptista, JM ;
Manton, NS .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) :3495-3508
[2]  
BAPTISTA JM, ARXIVHEPTH0208001
[3]   The Kahler potential of Abelian Higgs vortices [J].
Chen, HY ;
Manton, NS .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[4]  
CHEN HY, ARXIVHEPTH0407011
[5]  
COLLIE B, ARXIV08050602HEPTH
[6]   Dynamics of Chern-Simons vortices [J].
Collie, Benjamin ;
Tong, David .
PHYSICAL REVIEW D, 2008, 78 (06)
[7]   First and second order vortex dynamics [J].
Kim, Y ;
Lee, K .
PHYSICAL REVIEW D, 2002, 66 (04)
[8]  
KIM Y, ARXIVHEPTH0204111
[9]   Schrodinger-Chern-Simons vortex dynamics [J].
Krusch, S ;
Sutcliffe, P .
NONLINEARITY, 2006, 19 (07) :1515-1534
[10]  
KRUSCH S, ARXIVCONDMAT0511053