On the theory of organic catalysis on water

被引:599
作者
Jung, Yousung [1 ]
Marcus, R. A. [1 ]
机构
[1] CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA
关键词
D O I
10.1021/ja068120f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A molecular origin of the striking rate increase observed in a reaction on water is studied theoretically. A key aspect of the on-water rate phenomenon is the chemistry between water and reactants that occurs at an oil-water phase boundary. In particular, the structure of water at the oil-water interface of an oil emulsion, in which approximately one in every four interfacial water molecules has a free ("dangling") OH group that protrudes into the organic phase, plays a key role in catalyzing reactions via the formation of hydrogen bonds. Catalysis is expected when these OH's form stronger hydrogen bonds with the transition state than with the reactants. In experiments more than a 5 orders of magnitude enhancement in rate constant was found in a chosen reaction. The structural arrangement at the "oil-water" interface is in contrast to the structure of water molecules around a small hydrophobic solute in homogeneous solution, where the water molecules are tangentially oriented. The latter implies that a breaking of an existing hydrogen-bond network in homogeneous solution is needed in order to permit a catalytic effect of hydrogen bonds, but not for the on-water reaction. Thereby, the reaction in homogeneous aqueous solution is intrinsically slower than the surface reaction, as observed experimentally. The proposed mechanism of rate acceleration is discussed in light of other on-water reactions that showed smaller accelerations in rates. To interpret the results in different media, a method is given for comparing the rate constants of different rate processes, homogeneous, neat and on-water, all of which have different units, by introducing models that reduce them to the same units. The observed deuterium kinetic isotope effect is discussed briefly, and some experiments are suggested that can test the present interpretation and increase our understanding of the on-water catalysis.
引用
收藏
页码:5492 / 5502
页数:11
相关论文
共 75 条
[1]  
[Anonymous], 2000, LIFES MATRIX BIOGRAP
[2]   Emulsification of oil in water as affected by different parameters [J].
Baloch, MK ;
Hameed, G .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 285 (02) :804-813
[3]  
BELLISSENTFUNNE.M, 1994, HYDROGEN BOND NETWOR
[4]   SOLVENT EFFECTS ON A DIELS-ALDER REACTION FROM COMPUTER-SIMULATIONS [J].
BLAKE, JF ;
JORGENSEN, WL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (19) :7430-7432
[5]   ENHANCED HYDROGEN-BONDING OF WATER TO DIELS-ALDER TRANSITION-STATES - AB-INITIO EVIDENCE [J].
BLAKE, JF ;
LIM, D ;
JORGENSEN, WL .
JOURNAL OF ORGANIC CHEMISTRY, 1994, 59 (04) :803-805
[6]   HYDROPHOBIC EFFECTS ON SIMPLE ORGANIC-REACTIONS IN WATER [J].
BRESLOW, R .
ACCOUNTS OF CHEMICAL RESEARCH, 1991, 24 (06) :159-164
[7]   ON THE ORIGIN OF PRODUCT SELECTIVITY IN AQUEOUS DIELS-ALDER REACTIONS [J].
BRESLOW, R ;
MAITRA, U .
TETRAHEDRON LETTERS, 1984, 25 (12) :1239-1240
[8]   SELECTIVE DIELS-ALDER REACTIONS IN AQUEOUS-SOLUTIONS AND SUSPENSIONS [J].
BRESLOW, R ;
MAITRA, U ;
RIDEOUT, D .
TETRAHEDRON LETTERS, 1983, 24 (18) :1901-1904
[9]   The influence of water on the rates of 1,3-dipolar cycloaddition reactions: Trigger points for exponential rate increases in water-organic solvent mixtures. Water-super versus water-normal dipolarophiles [J].
Butler, RN ;
Cunningham, WJ ;
Coyne, AG ;
Burke, LA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (38) :11923-11929
[10]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647