Pungent General Anesthetics Activate Transient Receptor Potential-A1 to Produce Hyperalgesia and Neurogenic Bronchoconstriction

被引:51
作者
Eilers, Helge [1 ]
Cattaruzza, Fiore [1 ]
Nassini, Romina [1 ]
Materazzi, Serena [1 ]
Andre, Eunice [1 ]
Chu, Catherine [1 ]
Cottrell, Graeme S. [1 ]
Schumacher, Mark [1 ]
Geppetti, Pierangelo [1 ]
Bunnett, Nigel W. [1 ]
机构
[1] Univ Calif San Francisco, Dept Anesthesia & Perioperat Care, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
AIRWAY SMOOTH-MUSCLE; OPERATED CA2+ INFLUX; VOLATILE ANESTHETICS; INDUCED PAIN; INHALED ANESTHETICS; POSTOPERATIVE PAIN; SENSORY NEURONS; ION-CHANNEL; IN-VITRO; TRPA1;
D O I
10.1097/ALN.0b013e3181d94e00
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. Methods: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. Results: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. Conclusions: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.
引用
收藏
页码:1452 / 1463
页数:12
相关论文
共 51 条
[1]   Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization [J].
Akopian, Armen N. ;
Ruparel, Nikita B. ;
Jeske, Nathaniel A. ;
Hargreaves, Kenneth M. .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 583 (01) :175-193
[2]   Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia [J].
Amadesi, S ;
Nie, JJ ;
Vergnolle, N ;
Cottrell, GS ;
Grady, EF ;
Trevisani, M ;
Manni, C ;
Geppetti, P ;
McRoberts, JA ;
Ennes, H ;
Davis, B ;
Mayer, EA ;
Bunnett, NW .
JOURNAL OF NEUROSCIENCE, 2004, 24 (18) :4300-4312
[3]   Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents [J].
Andre, Eunice ;
Campi, Barbara ;
Materazzi, Serena ;
Trevisani, Marcello ;
Amadesi, Silvia ;
Massi, Daniela ;
Creminon, Christophe ;
Vaksman, Natalya ;
Nassini, Romina ;
Civelli, Maurizio ;
Baraldi, Pier Giovanni ;
Poole, Daniel P. ;
Bunnett, Nigel W. ;
Geppetti, Pierangelo ;
Patacchini, Riccardo .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (07) :2574-2582
[4]  
[Anonymous], 2004, SENTINEL EVENT ALERT
[5]   Pungent products from garlic activate the sensory ion channel TRPA1 [J].
Bautista, DM ;
Movahed, P ;
Hinman, A ;
Axelsson, HE ;
Sterner, O ;
Högestätt, ED ;
Julius, D ;
Jordt, SE ;
Zygmunt, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (34) :12248-12252
[6]   TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents [J].
Bautista, DM ;
Jordt, SE ;
Nikai, T ;
Tsuruda, PR ;
Read, AJ ;
Poblete, J ;
Yamoah, EN ;
Basbaum, AI ;
Julius, D .
CELL, 2006, 124 (06) :1269-1282
[7]   MODIFICATION OF SODIUM AND POTASSIUM CHANNEL GATING KINETICS BY ETHER AND HALOTHANE [J].
BEAN, BP ;
SHRAGER, P ;
GOLDSTEIN, DA .
JOURNAL OF GENERAL PHYSIOLOGY, 1981, 77 (03) :233-253
[8]   TRPA1 is a major oxidant sensor in murine airway sensory neurons [J].
Bessac, Bret F. ;
Sivula, Michael ;
Von Hehn, Christian A. ;
Escalera, Jasmine ;
Cohn, Lauren ;
Jordt, Sven-Eric .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (05) :1899-1910
[9]   Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control [J].
Bessac, Bret F. ;
Jordt, Sven-Eric .
PHYSIOLOGY, 2008, 23 (06) :360-370
[10]   Irritant-induced chronic cough: Irritant-induced TRPpathy [J].
Brooks, Stuart M. .
LUNG, 2008, 186 (Suppl 1) :S88-S93