The Jumping Operator on Invariant Subspaces in Spaces of Analytic Functions

被引:0
作者
Luo, Shuaibing [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Dirichlet space; Bergman space; Invariant subspace; Jumping operator; REPRODUCING KERNELS; DIRICHLET;
D O I
10.1007/s11785-018-0818-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D denote the Dirichlet space of holomorphic functions f in the open unit disc D with finite Dirichlet integral, integral(D) vertical bar f vertical bar(2)dA < infinity. For an M-z-invariant subspaceMof D we study the jumping operator PMMz P-M(perpendicular to) from the orthogonal complement of M to M. We show that the jumping operator is in Schatten p-class for p > 1 and we obtain that for a zero-based invariant subspaceMof D, the rank of the jumping operator is finite if and only ifMis of finite codimension. We also prove that there are invariant subspaces of D which have infinite codimension such that the corresponding jumping operators have finite rank. Furthermore, we show that some similar results hold in the setting of the Bergman space.
引用
收藏
页码:3501 / 3519
页数:19
相关论文
共 23 条
[1]   The majorization function and the index of invariant subspaces in the Bergman spaces [J].
Aleman, A ;
Richter, S ;
Sundberg, C .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 86 (1) :139-182
[2]  
Aleman A, 1993, Multiplication Operator on Hilbert Spaces of Analytic Functions, Habilitation
[3]  
Arveson W, 2000, J REINE ANGEW MATH, V522, P173
[4]  
Arveson W., 1969, ACTA MATH, V123, P141, DOI 10.1007/BF02392388
[5]  
Arveson WB, 2005, J OPERAT THEOR, V54, P101
[6]  
Chailos G, 2004, J OPERAT THEOR, V51, P181
[7]  
CONWAY JB, 1991, MATH SURVEYS MONOGRA, V36
[8]   On the Brown-Shields conjecture for cyclicity in the Dirichlet space [J].
El-Fallah, Omar ;
Kellay, Karim ;
Ransford, Thomas .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :2196-2214
[9]  
Fang X., 2001, ARXIVMATH0104246, P25
[10]   Essentially normal Hilbert modules and K-homology [J].
Guo, Kunyu ;
Wang, Kai .
MATHEMATISCHE ANNALEN, 2008, 340 (04) :907-934