A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions

被引:0
作者
Prussing, JE [1 ]
机构
[1] Univ Illinois, Coll Engn, Dept Aeronaut & Astronaut Engn, Talbot Lab 306, Urbana, IL 61801 USA
来源
RICHARD H BATTIN ASTRODYNAMICS SYMPOSIUM | 2000年 / 106卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In minimum-fuel impulsive spacecraft trajectories, long-duration coast arcs between thrust impulses can occur. If the coast time is long enough to allow one or more complete revolutions of the central body, the solution becomes complicated. Lambert's problem, the determination of the orbit that connects two specified terminal points in a specified time interval, affords multiple solutions. For a transfer time long enough to allow N revolutions of the central body there exist 2N + 1 trajectories that satisfy the boundary value problem. An algorithm based on the classical Lagrange formulation for an elliptic orbit is developed that determines all the trajectories. The procedure is applied to the problem of rendezvous with a target in the same circular orbit as the spacecraft. The minimum-fuel optimality of the two-impulse trajectory is determined using primer vector theory.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 19 条
[1]  
[Anonymous], THESIS MIT
[2]  
Battin R. H., 1987, AIAA ED SERIES
[3]   AN ELEGANT LAMBERT ALGORITHM [J].
BATTIN, RH ;
VAUGHAN, RM .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1984, 7 (06) :662-670
[4]  
CHIU JH, 1984, THESIS U ILLINOIS UR
[5]  
Gooding RH, 1990, CELEST MECH DYN ASTR, V48, P145
[6]   A NOTE ON LAMBERTS THEOREM [J].
LANCASTER, ER ;
BLANCHARD, RC ;
DEVANEY, RA .
JOURNAL OF SPACECRAFT AND ROCKETS, 1966, 3 (09) :1436-+
[7]  
Lawden DF., 1963, Optimal Trajectories for Space Navigation
[8]   PRIMER VECTOR ON FIXED-TIME IMPULSIVE TRAJECTORIES [J].
LION, PM ;
HANDELSMAN, M .
AIAA JOURNAL, 1968, 6 (01) :127-+
[9]  
OCHOA SI, 1992, ADV ASTRONAUT SCI, V79, P1205
[10]  
OCHOA SI, 1991, THESIS U ILLINOIS UR