GARCH processes:: structure and estimation

被引:281
作者
Berkes, I
Horváth, L
Kokoszka, P
机构
[1] Hungarian Acad Sci, A Renyi Inst Math, H-1364 Budapest, Hungary
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
asymptotic normality; consistency; GARCH(p; q); sequence; martingales; quasi-maximum likelihood;
D O I
10.3150/bj/1068128975
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the structure of a GARCH(p, q) sequence. We show that the conditional variance can be written as an infinite sum of the squares of the previous observations and that the representation is unique. We prove the consistency and asymptotic normality of the quasi-maximum likelihood estimator of the parameters of the GARCH(p, q) sequence under mild conditions.
引用
收藏
页码:201 / 227
页数:27
相关论文
共 13 条
[1]  
BASRAK B, 2001, SAMPLE MULTIVARIATE
[2]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[3]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[4]   STATIONARITY OF GARCH PROCESSES AND OF SOME NONNEGATIVE TIME-SERIES [J].
BOUGEROL, P ;
PICARD, N .
JOURNAL OF ECONOMETRICS, 1992, 52 (1-2) :115-127
[5]   STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES [J].
BOUGEROL, P ;
PICARD, N .
ANNALS OF PROBABILITY, 1992, 20 (04) :1714-1730
[6]  
BOURIEROUX C, 1997, ARCH MODEL FINANCIAL
[7]  
COMTE F, 2000, ASYMPTOTIC THEORY MU
[8]   AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION [J].
ENGLE, RF .
ECONOMETRICA, 1982, 50 (04) :987-1007
[9]   Strong consistency of estimators for multivariate ARCH models [J].
Jeantheau, T .
ECONOMETRIC THEORY, 1998, 14 (01) :70-86
[10]   SUBADDITIVE ERGODIC THEORY [J].
KINGMAN, JFC .
ANNALS OF PROBABILITY, 1973, 1 (06) :883-899