Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel

被引:21
作者
Tsuboi, Mizuki [1 ]
Shibata, Akinobu [1 ,2 ]
Terada, Daisuke [3 ,4 ]
Tsuji, Nobuhiro [1 ,2 ]
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Univ, Elements Strategy Initiat Struct Mat, Sakyo Ku, Kyoto 6068501, Japan
[3] Chiba Inst Technol, Dept Mech Sci & Engn, Narashino, Chiba 2750016, Japan
[4] Kyoto Univ, Elements Strategy Initiat Struct Mat, Kyoto, Japan
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2017年 / 48A卷 / 07期
基金
日本学术振兴会;
关键词
DUCTILE-BRITTLE TRANSITION; FE-C ALLOYS; LATH MARTENSITE; ORIENTATION RELATIONSHIP; MECHANICAL-PROPERTIES; MORPHOLOGY; CRYSTALLOGRAPHY; AUSTENITE; BAINITE; GRAIN;
D O I
10.1007/s11661-017-4107-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present paper investigated the relationship between low-temperature embrittlement and microstructure of lath martensite in a low-carbon steel from both microstructural and crystallographic points of view. The fracture surface of the specimen after the miniaturized Charpy impact test at 98 K (-175 A degrees C) mainly consisted of cleavage fracture facets parallel to crystallographic {001} planes of martensite. Through the crystallographic orientation analysis of micro-crack propagation, we found that the boundaries which separated different martensite variants having large misorientation angles of {001} cleavage planes could inhibit crack propagation. It was then concluded that the size of the aggregations of martensite variants belonging to the same Bain deformation group could control the low-temperature embrittlement of martensitic steels.
引用
收藏
页码:3261 / 3268
页数:8
相关论文
共 27 条
[1]   Crystallography of upper bainite in Fe-Ni-C alloys [J].
Furuhara, T. ;
Kawata, H. ;
Morito, S. ;
Maki, T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 431 (1-2) :228-236
[2]   Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J].
Gourgues, AF ;
Flower, HM ;
Lindley, TC .
MATERIALS SCIENCE AND TECHNOLOGY, 2000, 16 (01) :26-40
[3]   Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size [J].
Hanamura, T ;
Yin, F ;
Nagai, K .
ISIJ INTERNATIONAL, 2004, 44 (03) :610-617
[4]   GRAIN REFINEMENT THROUGH THERMAL CYCLING IN AN FE-NI-TI CRYOGENIC ALLOY [J].
JIN, S ;
MORRIS, JW ;
ZACKAY, VF .
METALLURGICAL TRANSACTIONS, 1975, 6 (01) :141-149
[5]   THE ORIENTATION RELATIONSHIP BETWEEN LATH MARTENSITE AND AUSTENITE IN LOW-CARBON, LOW-ALLOY STEELS [J].
KELLY, PM ;
JOSTSONS, A ;
BLAKE, RG .
ACTA METALLURGICA ET MATERIALIA, 1990, 38 (06) :1075-1081
[6]   IMPACT PROPERTIES OF INTERMETALLIC COMPOUNDS [J].
KIMURA, A ;
KOYA, A ;
MORIMURA, T ;
MISAWA, T .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :425-430
[7]   The microstructure of lath martensite in quenched 9Ni steel [J].
Kinney, C. C. ;
Pytlewski, K. R. ;
Khachaturyan, A. G. ;
Morris, J. W., Jr. .
ACTA MATERIALIA, 2014, 69 :372-385
[8]   Crystallographic features of lath martensite in low-carbon steel [J].
Kitahara, H ;
Ueji, R ;
Tsuji, N ;
Minamino, Y .
ACTA MATERIALIA, 2006, 54 (05) :1279-1288
[9]  
Maki T., 1971, P INT S STEEL SCI, P1
[10]  
MARDER AR, 1969, ASM TRANS Q, V62, P957