HOMOCLINIC ORBITS FOR SUPERLINEAR HAMILTONIAN SYSTEMS WITHOUT AMBROSETTI-RABINOWITZ GROWTH CONDITION

被引:15
作者
Wang, Jun [1 ]
Xu, Junxiang [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
Homoclinic orbits; Hamiltonian systems; Linking theorem; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATION; EXISTENCE; CALCULUS; SYMMETRY;
D O I
10.3934/dcds.2010.27.1241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of homoclinic orbits for the first order non-autonomous Hamiltonian system. (z) over dot = J H(z) (t, z), where H (t, z) depends periodically on t. We establish some existence results of the homoclinic orbits for weak superlinear cases. To this purpose, we apply a new linking theorem to provide bounded Palais-Samle sequences.
引用
收藏
页码:1241 / 1257
页数:17
相关论文
共 29 条
[11]   Infinitely many homoclinic orbits of a Hamiltonian system with symmetry [J].
Ding, YH ;
Girardi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (03) :391-415
[12]   HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS [J].
DING, YH ;
LI, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :585-601
[14]   Homoclinic orbits of a Hamiltonian system [J].
Ding, YH ;
Willem, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05) :759-778
[15]   1ST ORDER ELLIPTIC-SYSTEMS AND THE EXISTENCE OF HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
HOFER, H ;
WYSOCKI, K .
MATHEMATISCHE ANNALEN, 1990, 288 (03) :483-503
[16]  
Kryszewski A., 1998, Adv. Differ. Equ, V3, P441, DOI DOI 10.57262/ADE/1366399849
[17]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223
[18]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[19]  
Omana W., 1992, Diff. Int. Equ, V5, P1115
[20]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38