HOMOCLINIC ORBITS FOR SUPERLINEAR HAMILTONIAN SYSTEMS WITHOUT AMBROSETTI-RABINOWITZ GROWTH CONDITION

被引:15
作者
Wang, Jun [1 ]
Xu, Junxiang [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
Homoclinic orbits; Hamiltonian systems; Linking theorem; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATION; EXISTENCE; CALCULUS; SYMMETRY;
D O I
10.3934/dcds.2010.27.1241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of homoclinic orbits for the first order non-autonomous Hamiltonian system. (z) over dot = J H(z) (t, z), where H (t, z) depends periodically on t. We establish some existence results of the homoclinic orbits for weak superlinear cases. To this purpose, we apply a new linking theorem to provide bounded Palais-Samle sequences.
引用
收藏
页码:1241 / 1257
页数:17
相关论文
共 29 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
AMBROSETTI A, 1992, CR ACAD SCI I-MATH, V314, P601
[3]  
[Anonymous], 1987, SPECTRAL THEORY DIFF
[4]   Homoclinic solutions of Hamiltonian systems with symmetry [J].
Arioli, G ;
Szulkin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (02) :291-313
[5]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[6]  
Coppel W. A., 1978, Dichotomies in stability theory, V629
[7]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[8]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[9]  
Ding Y., 1993, DYNAM SYST APPL, V2, P131
[10]   Homoclinic orbits for a nonperiodic Hamiltonian system [J].
Ding, Yanheng ;
Jeanjean, Louis .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) :473-490