HOMOCLINIC ORBITS FOR SUPERLINEAR HAMILTONIAN SYSTEMS WITHOUT AMBROSETTI-RABINOWITZ GROWTH CONDITION

被引:15
作者
Wang, Jun [1 ]
Xu, Junxiang [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
Homoclinic orbits; Hamiltonian systems; Linking theorem; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATION; EXISTENCE; CALCULUS; SYMMETRY;
D O I
10.3934/dcds.2010.27.1241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of homoclinic orbits for the first order non-autonomous Hamiltonian system. (z) over dot = J H(z) (t, z), where H (t, z) depends periodically on t. We establish some existence results of the homoclinic orbits for weak superlinear cases. To this purpose, we apply a new linking theorem to provide bounded Palais-Samle sequences.
引用
收藏
页码:1241 / 1257
页数:17
相关论文
共 29 条