Optical solitons with anti-cubic nonlinearity by extended trial equation method

被引:113
作者
Ekici, Mehmet [1 ]
Mirzazadeh, Mohammad [2 ]
Sonmezoglu, Abdullah [1 ]
Ullah, Malik Zaka [3 ]
Zhou, Qin [4 ]
Triki, Houria [5 ]
Moshokoa, Seithuti P. [6 ]
Biswas, Anjan [3 ,6 ]
机构
[1] Bozok Univ, Dept Math, Fac Sci & Arts, TR-66100 Yozgat, Turkey
[2] Univ Guilan, Dept Engn Sci, Fac Technol & Engn, Rudsar Vajargah 4489163157, Iran
[3] King Abdulaziz Univ, Operator Theory & Applicat Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[5] Badji Mokhtar Univ, Radiat Phys Lab, Dept Phys, Fac Sci, POB 12, Annaba 23000, Algeria
[6] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
来源
OPTIK | 2017年 / 136卷
关键词
Solitons; Anti-cubic nonlinearity; Extended trail equation method; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; SCHRODINGERS EQUATION;
D O I
10.1016/j.ijleo.2017.02.004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The extended trial equation method is applied to extract bright and singular optical solitons, with anti-cubic nonlinearity, in addition to singular periodic and doubly periodic solutions. The results of this paper are generalized and extended versions of previously reported solutions. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 11 条
[1]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[2]   OPTICAL SOLITON PERTURBATION IN NANOFIBERS WITH IMPROVED NONLINEAR SCHRODINGER'S EQUATION BY SEMI-INVERSE VARIATIONAL PRINCIPLE [J].
Biswas, Anjan ;
Milovic, Daniela ;
Savescu, Michelle ;
Mahmood, Mohammad F. ;
Khan, Kaisar R. ;
Kohl, Russell .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2012, 21 (04)
[3]   Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion [J].
Ekici, M. ;
Mirzazadeh, M. ;
Eslami, M. .
NONLINEAR DYNAMICS, 2016, 84 (02) :669-676
[4]   Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity [J].
Fedele, R ;
Schamel, H ;
Karpman, VI ;
Shukla, PK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (04) :1169-1173
[5]   Extended trial equation method to generalized nonlinear partial differential equations [J].
Gurefe, Yusuf ;
Misirli, Emine ;
Sonmezoglu, Abdullah ;
Ekici, Mehmet .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5253-5260
[6]  
Liu CS, 2008, COMMUN THEOR PHYS, V49, P153, DOI 10.1088/0253-6102/49/1/33
[7]   Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations [J].
Liu, Cheng-shi .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (02) :317-324
[8]   Optical Solitons in Photonic Nano Waveguides with an Improved Nonlinear Schrodinger's Equation [J].
Savescu, Michelle ;
Khan, Kaisar R. ;
Naruka, Preeti ;
Jafari, Hossein ;
Moraru, Luminita ;
Biswas, Anjan .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) :1182-1191
[9]   Optical Soliton Perturbation with Improved Nonlinear Schrodinger's Equation in Nano Fibers [J].
Savescu, Michelle ;
Khan, Kaisar R. ;
Kohl, Russell W. ;
Moraru, Luminita ;
Yildirim, Ahmet ;
Biswas, Anjan .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2013, 8 (02) :208-220
[10]   Optical solitons and conservation laws with anti-cubic nonlinearity [J].
Triki, Houria ;
Kara, Abdul H. ;
Biswas, Anjan ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2016, 127 (24) :12056-12062