Efficient computation of all speed flows using an entropy stable shock-capturing space-time discontinuous Galerkin method

被引:0
作者
Hiltebrand, Andreas [1 ]
Mishra, Siddhartha [2 ,3 ]
机构
[1] ANSYS Switzerland, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Math, Seminar Appl Math SAM, HG G 57-2,Ramistr 101, CH-8092 Zurich, Switzerland
[3] Univ Oslo, SwitzerlandCtr Math Applicat CMA, POB 1053, N-0316 Oslo, Norway
来源
NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS, MATHEMATICAL PHYSICS, AND STOCHASTIC ANALYSIS: THE HELGE HOLDEN ANNIVERSARY VOLME | 2018年
关键词
FINITE-ELEMENT-METHOD; ESSENTIALLY NONOSCILLATORY SCHEMES; MACH NUMBER LIMIT; CONSERVATION-LAWS; INCOMPRESSIBLE-FLOW; COMPRESSIBLE FLOWS; ISENTROPIC EULER; SYSTEMS; EQUATIONS; FLUID;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a shock-capturing space-time discontinuous Galerkin method to approximate all speed flows modeled by systems of conservation laws with multiple time scales. The method provides a very general and computationally efficient framework for approximating such systems on account of its ability to incorporate large time steps. Numerical examples ranging from computing the incompressible limit (robustness with respect to Mach number) of the Euler equations to accelerating convergence to steady state are presented for illustrating the method.
引用
收藏
页码:287 / 318
页数:32
相关论文
共 39 条
[1]  
Abbott I. H., 1945, TECHNICAL REPORT, V824
[2]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[3]  
Barth TJ, 1999, LECT NOTES COMP SCI, V5, P195
[4]   A unified method for computing incompressible and compressible flows in boundary-fitted coordinates [J].
Bijl, H ;
Wesseling, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :153-173
[5]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[6]  
Dafermos CM., 2000, Hyperbolic Conservation Laws in Continuum Physics
[7]   An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field [J].
Degond, P. ;
Deluzet, F. ;
Sangam, A. ;
Vignal, M. -H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) :3540-3558
[8]  
Degond P, 2007, BULL INST MATH ACAD, V2, P851
[9]   All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations [J].
Degond, Pierre ;
Tang, Min .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (01) :1-31
[10]   MEASURE-VALUED SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 88 (03) :223-270