Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)

被引:8
作者
Atalaya Marin, Nilton [1 ]
Barboza, Elgar [1 ,2 ]
Salas Lopez, Rolando [1 ]
Vasquez, Hector V. [1 ,2 ]
Gomez Fernandez, Darwin [1 ]
Terrones Murga, Renzo E. [1 ]
Rojas Briceno, Nilton B. [1 ,3 ]
Oliva-Cruz, Manuel [1 ]
Gamarra Torres, Oscar Andres [1 ]
Silva Lopez, Jhonsy O. [1 ]
Turpo Cayo, Efrain [4 ]
机构
[1] Univ Nacl Toribio Rodriguez Mendoza Amazonas UNTR, Inst Invest Desarrollo Sostenible Ceja Selva INDE, Chachapoyas 01001, Peru
[2] Inst Nacl Innovac Agr INIA, Direcc Desarrollo Tecnol Agrario, Av La Molina 1981, Lima 15024, Peru
[3] Univ Nacl Toribio Rodriguez Mendoza Amazonas UNTR, Inst Invest Ingn Ambiental IIIA, Chachapoyas 01001, Peru
[4] Univ Nacl Agr La Molina, Programa Doctorado Recursos Hidr PDRH, Ave La Molina S-N, Lima 15012, Peru
关键词
grassland dynamics; Google Earth Engine (GEE); sustainable livestock; remote sensing; random forest (RF); Landsat; LEAF-AREA INDEX; MEADOW STEPPE; VEGETATION; MODIS; PASTURES; VALIDATION; NDVI; EXTRACTION; RESPONSES; CAPACITY;
D O I
10.3390/land11050674
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI). The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020 through random forest (RF) classification reaching accuracies above 85%. The application of RF in GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla (from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990-2020. Effectively, this study aims to provide useful information for territorial planning with potential replicability for other cattle-raising regions of the country. It could further be used to improve grassland management and promote semi-extensive livestock farming.
引用
收藏
页数:18
相关论文
共 101 条
[1]   Satellite remote sensing of grasslands: from observation to management [J].
Ali, Iftikhar ;
Cawkwell, Fiona ;
Dwyer, Edward ;
Barrett, Brian ;
Green, Stuart .
JOURNAL OF PLANT ECOLOGY, 2016, 9 (06) :649-671
[2]   Converting Brazil's pastures to cropland: An alternative way to meet sugarcane demand and to spare forestlands [J].
Alkimim, Akenya ;
Sparovek, Gerd ;
Clarke, Keith C. .
APPLIED GEOGRAPHY, 2015, 62 :75-84
[3]   National Mapping of New Zealand Pasture Productivity Using Temporal Sentinel-2 Data [J].
Amies, Alexander C. ;
Dymond, John R. ;
Shepherd, James D. ;
Pairman, David ;
Hoogendoorn, Coby ;
Sabetizade, Marmar ;
Belliss, Stella E. .
REMOTE SENSING, 2021, 13 (08)
[4]  
[Anonymous], 2017, PLAN NAC DES GAN 201
[5]  
[Anonymous], AVHRR ADV VER HIGH R
[6]  
[Anonymous], IMP CONS PAST
[7]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[8]  
[Anonymous], 2018, PLAT INT CIENT NORM
[9]  
[Anonymous], 2017, FESTUCA DOLICHOPHYLL
[10]  
Atencias Lopez J. M., 2015, ANALISIS PROPUESTA M