On preconditioning the self-consistent field iteration in real-space Density Functional Theory

被引:15
作者
Kumar, Shashikant [1 ]
Xu, Qimen [1 ]
Suryanarayana, Phanish [1 ]
机构
[1] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Density Functional Theory; Real-space; Fourier-space; Kerker preconditioner; Resta preconditioner; FINITE-DIFFERENCE FORMULATION; CONVERGENCE ACCELERATION; PARALLEL IMPLEMENTATION; SPARC ACCURATE; KRYLOV METHODS; EFFICIENT; SCHEME; ROBUST;
D O I
10.1016/j.cplett.2019.136983
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a real-space formulation for isotropic Fourier-space preconditioners used to accelerate the self-consistent field iteration in Density Functional Theory calculations. Specifically, after approximating the pre-conditioner in Fourier space using a rational function, we express its real-space application in terms of the solution of sparse Helmholtz-type systems. Using the truncated-Kerker and Resta preconditioners as representative examples, we show that the proposed real-space method is both accurate and efficient, requiring the solution of a single linear system, while accelerating self-consistency to the same extent as its exact Fourier-space counterpart.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Can Density Matrix Embedding Theory with the Complete Activate Space Self-Consistent Field Solver Describe Single and Double Bond Breaking in Molecular Systems? [J].
Pham, Hung Q. ;
Bernales, Varinia ;
Gagliardi, Laura .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (04) :1960-1968
[42]   A self-consistent perturbative density functional theory for hard-core fluids: phase diagrams, structural and interfacial properties [J].
Soares, Elvis do A. ;
Barreto Jr, Amaro G. ;
Tavares, Frederico W. .
FLUID PHASE EQUILIBRIA, 2021, 542
[43]   Linear-scaling self-consistent implementation of the van der Waals density functional [J].
Gulans, Andris ;
Puska, Martti J. ;
Nieminen, Risto M. .
PHYSICAL REVIEW B, 2009, 79 (20)
[44]   An approximate eigensolver for self-consistent field calculations [J].
Harald Hofstätter ;
Othmar Koch .
Numerical Algorithms, 2014, 66 :609-641
[45]   An approximate eigensolver for self-consistent field calculations [J].
Hofstaetter, Harald ;
Koch, Othmar .
NUMERICAL ALGORITHMS, 2014, 66 (03) :609-641
[46]   Morphology transformation of micelles self-assembled from amphiphilic coil-coil diblock copolymer/nanoparticle mixture in dilute solution by combining self-consistent field theory and density functional theory [J].
Wang, Jianlei ;
Li, Yonggui ;
Zheng, Longhui ;
Wang, Haopeng ;
Wu, Lixin ;
Zhang, Xu .
CHEMICAL PHYSICS LETTERS, 2018, 710 :215-220
[47]   Ab initio density functional theory calculations in the real space [J].
Venkatesh, PK .
PHYSICA B-CONDENSED MATTER, 2002, 318 (2-3) :121-139
[48]   Real-space density-functional calculations for Si divacancies with large size supercell models [J].
Iwata, JI ;
Oshiyama, A ;
Shiraishi, K .
PHYSICA B-CONDENSED MATTER, 2006, 376 :196-199
[49]   A tiered approach to Monte Carlo sampling with self-consistent field potentials [J].
Steele, Ryan P. ;
Tully, John C. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (18)
[50]   Lowering the Scaling of Self-Consistent Field Methods by Combining Tensor Hypercontraction and a Density Difference Ansatz [J].
Hillers-Bendtsen, Andreas Erbs ;
Martinez, Todd J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (19) :4734-4739