Monitoring of a machining process using kernel principal component analysis and kernel density estimation

被引:72
|
作者
Lee, Wo Jae [1 ]
Mendis, Gamini P. [1 ]
Triebe, Matthew J. [1 ]
Sutherland, John W. [1 ]
机构
[1] Purdue Univ, Environm & Ecol Engn, 500 Cent Dr, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Kernel principal component analysis; Control chart; Machining process; Tool condition monitoring; TOOL WEAR;
D O I
10.1007/s10845-019-01504-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tool wear is one of the consequences of a machining process. Excessive tool wear can lead to poor surface finish, and result in a defective product. It can also lead to premature tool failure, and may result in process downtime and damaged components. With this in mind, it has long been desired to monitor tool wear/tool condition. Kernel principal component analysis (KPCA) is proposed as an effective and efficient method for monitoring the tool condition in a machining process. The KPCA-based method may be used to identify faults (abnormalities) in a process through the fusion of multi-sensor signals. The method employs a control chart monitoring approach that uses Hotelling's T-2-statistic and Q-statistic to identify the faults in conjunction with control limits, which are computed by kernel density estimation (KDE). KDE is a non-parametric technique to approximate a probability density function. Four performance metrics, abnormality detection rate, false detection rate, detection delay, and prediction accuracy, are employed to test the reliability of the monitoring system and are used to compare the KPCA-based method with PCA-based method. Application of the proposed monitoring system to experimental data shows that the KPCA based method can effectively monitor the tool wear.
引用
收藏
页码:1175 / 1189
页数:15
相关论文
共 50 条
  • [1] Monitoring of a machining process using kernel principal component analysis and kernel density estimation
    Wo Jae Lee
    Gamini P. Mendis
    Matthew J. Triebe
    John W. Sutherland
    Journal of Intelligent Manufacturing, 2020, 31 : 1175 - 1189
  • [2] The application of principal component analysis and kernel density estimation to enhance process monitoring
    Chen, Q
    Wynne, RJ
    Goulding, P
    Sandoz, D
    CONTROL ENGINEERING PRACTICE, 2000, 8 (05) : 531 - 543
  • [3] Monitoring of SBR process using kernel principal component analysis
    Fan, Liping
    Yu, Haibin
    Yuan, Decheng
    Xu, Yang
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2006, 27 (03): : 249 - 253
  • [4] Nonlinear process monitoring using kernel principal component analysis
    Lee, JM
    Yoo, CK
    Choi, SW
    Vanrolleghem, PA
    Lee, IB
    CHEMICAL ENGINEERING SCIENCE, 2004, 59 (01) : 223 - 234
  • [5] Fault identification for process monitoring using kernel principal component analysis
    Cho, JH
    Lee, JM
    Choi, SW
    Lee, D
    Lee, IB
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) : 279 - 288
  • [6] Nonlinear Process Monitoring Using Improved Kernel Principal Component Analysis
    Wei, Chihang
    Chen, Junghui
    Song, Zhihuan
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 5838 - 5843
  • [7] Online reduced kernel principal component analysis for process monitoring
    Fezai, Radhia
    Mansouri, Majdi
    Taouali, Okba
    Harkat, Mohamed Faouzi
    Bouguila, Nasreddine
    JOURNAL OF PROCESS CONTROL, 2018, 61 : 1 - 11
  • [8] Fault detection for process monitoring using improved kernel principal component analysis
    Xu, Jie
    Hu, Shousong
    Shen, Zhongyu
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 334 - +
  • [9] Fault detection and estimation using kernel principal component analysis
    Kallas, Maya
    Mourot, Gilles
    Anani, Kwami
    Ragot, Jose
    Maquin, Didier
    IFAC PAPERSONLINE, 2017, 50 (01): : 1025 - 1030
  • [10] Uncertain Nonlinear Process Monitoring Using Interval Ensemble Kernel Principal Component Analysis
    Wang, Xianrui
    Zhao, Guoxin
    Liu, Yu
    Yang, Shujie
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2021, 25 (01) : 101 - 109