An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications

被引:6
作者
Xu, Fei [1 ]
Huang, Qiumei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; a posteriori error estimator; cascadic multigrid method; adaptive finite element method; complementary method; ADAPTIVE ALGORITHM; ELLIPTIC PROBLEMS; FINITE; CONVERGENCE; APPROXIMATION; H(DIV);
D O I
10.1007/s11425-018-9525-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine mesh and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 48 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[3]   Isoparametric finite-element approximation of a Steklov eigenvalue problem [J].
Andreev, AB ;
Todorov, TD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :309-322
[4]  
[Anonymous], 1985, Multi-grid methods and applications
[5]   A posteriori error estimates for the Steklov eigenvalue problem [J].
Armentano, Maria G. ;
Padra, Claudio .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) :593-601
[6]   Preconditioning in H(div) and applications [J].
Arnold, DN ;
Falk, RS ;
Winther, R .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :957-984
[7]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[8]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[9]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[10]  
Babuska I., 1991, Finite element methods, V2, P640