Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction

被引:46
作者
Blommaert, Marijn A. [1 ]
Sharifian, Rezvan [1 ,2 ]
Shah, Namrata U. [1 ]
Nesbitt, Nathan T. [1 ]
Smith, Wilson A. [1 ]
Vermaas, David A. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, NL-2629 HZ Delft, Netherlands
[2] European Ctr Excellence Sustainable Water Technol, Wetsus, NL-8911 MA Leeuwarden, Netherlands
关键词
WATER DISSOCIATION; FLOW BATTERY; PERFORMANCE; DIOXIDE; MECHANISMS; SYNGAS; CELLS;
D O I
10.1039/d0ta12398f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A bipolar membrane (BPM), consisting of a cation and an anion exchange layer (CEL and AEL), can be used in an electrochemical cell in two orientations: reverse bias and forward bias. A reverse bias is traditionally used to facilitate water dissociation and control the pH at either side. A forward bias has been proposed for several applications, but insight into the ion transport mechanism is lacking. At the same time, when implementing a BPM in a membrane electrode assembly (MEA) for CO2 reduction, the BPM orientation determines the environment of the CO2 reduction catalyst, the anolyte interaction and the direction of the electric field at the interface layer. In order to understand the transport mechanisms of ions and carbonic species within a bipolar membrane electrode assembly (BPMEA), these two orientations were compared by performing CO2 reduction. Here, we present a novel BPMEA using a Ag catalyst layer directly deposited on the membrane layer at the vapour-liquid interface. In the case of reverse bias, the main ion transport mechanism is water dissociation. CO2 can easily crossover through the CEL as neutral carbonic acid due to the low pH in the reverse bias. Once it enters the AEL, it will be transported to the anolyte as (bi)carbonate because of the presence of hydroxide ions. When the BPM is in the forward bias mode, with the AEL facing the cathode, no net water dissociation occurs. This not only leads to a 3 V lower cathodic potential but also reduces the flux of carbonic species through the BPM. As the pH in the AEL is higher, (bi)carbonate is transported towards the CEL, which then blocks the majority of those species. However, this forward bias mode showed a lower selectivity towards CO production and a higher salt concentration was observed at the cathode surface. The high overpotential and CO2 crossover in reverse bias can be mitigated via engineering BPMs, providing higher potential for future application than that of a BPM in forward bias owing to the intrinsic disadvantages of salt recombination and poor faradaic efficiency for CO2 reduction.
引用
收藏
页码:11179 / 11186
页数:8
相关论文
共 36 条
[1]   The role of the salt electrolyte on the electrical conductive properties of a polymeric bipolar membrane [J].
Alcaraz, A ;
Wilhelm, FG ;
Wessling, M ;
Ramírez, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 513 (01) :36-44
[2]   Reduced Ion Crossover in Bipolar Membrane Electrolysis via Increased Current Density, Molecular Size, and Valence [J].
Blommaert, Marijn A. ;
Verdonk, Joost A. H. ;
Blommaert, Hester C. B. ;
Smith, Wilson A. ;
Vermaas, David A. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5804-5812
[3]   Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes [J].
Blommaert, Marijn A. ;
Vermaas, David A. ;
Izelaar, Boaz ;
Veen, Ben In't ;
Smith, Wilson A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) :19060-19069
[4]   Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes [J].
Bui, Justin C. ;
Digdaya, Ibadillah ;
Xiang, Chengxiang ;
Bell, Alexis T. ;
Weber, Adam Z. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) :52509-52526
[5]   High-Performance Bipolar Membrane Development for Improved Water Dissociation [J].
Chen, Yingying ;
Wrubel, Jacob A. ;
Klein, W. Ellis ;
Kabir, Sadia ;
Smith, Wilson A. ;
Neyerlin, K. C. ;
Deutsch, Todd G. .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (11) :4559-4569
[6]   A Robust, Scalable Platform for the Electrochemical Conversion of CO2 to Formate: Identifying Pathways to Higher Energy Efficiencies [J].
Chen, Yingying ;
Vise, Ashlee ;
Klein, W. Ellis ;
Cetinbas, Firat C. ;
Myers, Deborah J. ;
Smith, Wilson A. ;
Deutsch, Todd G. ;
Neyerlin, K. C. .
ACS ENERGY LETTERS, 2020, 5 (06) :1825-1833
[7]   Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature [J].
Delacourt, Charles ;
Ridgway, Paul L. ;
Kerr, John B. ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B42-B49
[8]   Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly [J].
Gabardo, Christine M. ;
O'Brien, Colin P. ;
Edwards, Jonathan P. ;
McCallum, Christopher ;
Xu, Yi ;
Dinh, Cao-Thang ;
Li, Jun ;
Sargent, Edward H. ;
Sinton, David .
JOULE, 2019, 3 (11) :2777-2791
[9]   Syngas production from electrochemical reduction of CO2: current status and prospective implementation [J].
Hernandez, Simelys ;
Farkhondehfal, M. Amin ;
Sastre, Francesc ;
Makkee, Michiel ;
Saracco, Guido ;
Russo, Nunzio .
GREEN CHEMISTRY, 2017, 19 (10) :2326-2346
[10]   Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes [J].
Kaczur, Jerry J. ;
Yang, Hongzhou ;
Liu, Zengcai ;
Sajjad, Syed A. ;
Masel, Richard, I .
FRONTIERS IN CHEMISTRY, 2018, 6