On Gaussian kernels on Hilbert spaces and kernels on hyperbolic spaces

被引:7
作者
Guella, J. C. [1 ]
机构
[1] Inst Math Stat & Sci Comp, Campinas, Brazil
关键词
Universal; Integrally strictly positive definite; C0-universal; Gaussian kernels; Conditionally negative definite; Kernels on hyperbolic spaces; Hyperbolic kernels; Gneiting class; COVARIANCE FUNCTIONS; METRIC-SPACES;
D O I
10.1016/j.jat.2022.105765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes the concepts of Strictly Positive Definite, Universal, Integrally Strictly Positive Definite, C0-Universal for the Gaussian kernel on a Hilbert space. As a consequence we obtain a similar characterization for an important family of kernels studied and developed by Schoenberg and also on a family of spatial-time kernels popular in geostatistics, the Gneiting class, and its generalizations. Either by using similar techniques, or by a direct consequence of the Gaussian kernel on Hilbert spaces, we characterize the same concepts for a family of kernels defined on a real hyperbolic space.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:36
相关论文
共 34 条
[1]  
[Anonymous], 2009, Advances in Neural Information Processing Systems
[2]  
Arcozzi N, 2011, CONTEMP MATH, V547, P25
[3]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[4]  
Berg C., 1984, HARMONIC ANAL SEMIGR, V100
[5]   A flexible class of non-separable cross-covariance functions for multivariate space-time data [J].
Bourotte, Marc ;
Allard, Denis ;
Porcu, Emilio .
SPATIAL STATISTICS, 2016, 18 :125-146
[6]  
Caponnetto A, 2008, J MACH LEARN RES, V9, P1615
[7]   VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY [J].
Carmeli, C. ;
De Vito, E. ;
Toigo, A. ;
Umanita, V. .
ANALYSIS AND APPLICATIONS, 2010, 8 (01) :19-61
[8]  
Cheney E.W., 1995, APPROXIMATION THEORY, V6, P145
[9]  
Christmann A., 2010, Advances in Neural Information Processing Systems
[10]  
Cucker F, 2007, C MO AP C M, P1, DOI 10.1017/CBO9780511618796