Robust dynamics estimation of gene expression data

被引:0
作者
Cheng-Fa Cheng [1 ]
Meng-Lin Wu [2 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Commun & Guidance, Chilung 202, Taiwan
[2] Natl Taiwan Ocean Univ, Dept Commun & Guidence, Keelung, Taiwan
来源
2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS | 2006年
关键词
D O I
10.1109/ICSMC.2006.384689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we apply a nonlinear filtering algorithm based on SVD and comp ressi on- based filtering, to estimate the characteristic modes of observed gene expression data with independently identically distributed (i.i.d.) random variables of Gaussian density of zero mean. The essence of the technique is that when the proposed lossy data compression algorithm, with the allowed loss set equal to the noise strength, is applied to a noisy gene expression data, the loss and the noise tend to cancel. Then we will use the estimated noise strength as a threshold to determine the effective characteristic modes for reconstructing the gene expression profiles, followed by ritting of a linear discrete-time dynamical system in which the expression values at a given time point are linear combinations of the values at a previous time point. Furthermore, the time evolution of expression values by using the translation matrix to predict future expression values will be investigated. Finally the publicly available data set of yeast from microarray experiments on the synchronized cell cycle (CDC15) is given to exemplify the implementation of the proposed technique.
引用
收藏
页码:3607 / +
页数:2
相关论文
共 17 条
[1]  
DEVORC RA, 1992, P IEEE MILITARY COMM, V3, P1129
[2]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[3]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[4]  
Everitt B. S, 2001, APPL MULTIVARIATE DA
[5]  
GERSHON D, 2002, NATURE, V441, P885
[6]  
Golub G.H., 2013, Matrix Computations, V4th
[7]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[8]  
Gonzalez R.C., 2007, DIGITAL IMAGE PROCES
[9]   Fundamental patterns underlying gene expression profiles: Simplicity from complexity [J].
Holter, NS ;
Mitra, M ;
Maritan, A ;
Cieplak, M ;
Banavar, JR ;
Fedoroff, NV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8409-8414
[10]   Dynamic modeling of gene expression data [J].
Holter, NS ;
Maritan, A ;
Cieplak, M ;
Fedoroff, NV ;
Banavar, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :1693-1698