FAST FINITE DIFFERENCE APPROXIMATION FOR IDENTIFYING PARAMETERS IN A TWO-DIMENSIONAL SPACE-FRACTIONAL NONLOCAL MODEL WITH VARIABLE DIFFUSIVITY COEFFICIENTS

被引:49
作者
Chen, S. [1 ,2 ]
Liu, F. [3 ]
Jiang, X. [2 ]
Turner, I. [4 ]
Burrage, K. [4 ,5 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[4] Queensland Univ Technol, Sch Math Sci, ACEMS ARC Ctr Excellence, Brisbane, Qld 4001, Australia
[5] Univ Oxford, Dept Comp Sci, Oxford OXI 3QD, England
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
space-fractional nonlocal model; variable coefficients; implicit difference method; FBi-CGSTAB; parameter identification; L-M regularization method; ANOMALOUS DIFFUSION; NUMERICAL APPROXIMATION; DYNAMICAL MODELS; HEAT-CONDUCTION; INVERSE PROBLEM; TIME; DISPERSION; EQUATIONS; ORDER; SCHEME;
D O I
10.1137/15M1019301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an inverse problem for identifying the fractional derivative indices in a two-dimensional space-fractional nonlocal model based on a generalization of the two-sided Riemann-Liouville formulation with variable diffusivity coefficients. First, we derive an implicit difference method (IDM) for the direct problem and the stability and convergence of the IDM are discussed. Second, for the implementation of the IDM, we develop a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) that is superior in computational performance to Gaussian elimination and attains the same accuracy. Third, we utilize the Levenberg-Marquardt (L-M) regularization technique combined with the Armijo rule (the popular inexact line search condition) to solve the modified nonlinear least squares model associated with the parameter identification. Finally, we carry out numerical tests to verify the accuracy and efficiency of the IDM. Numerical investigations are performed with both accurate data and noisy data to check the effectiveness of the L-M regularization method. The convergence behavior of the L-M for the inverse problem involving the space-fractional diffusion model is shown graphically.
引用
收藏
页码:606 / 624
页数:19
相关论文
共 55 条
[1]  
[Anonymous], 1996, MATRIX COMPUTATION
[2]  
[Anonymous], 1994, TEMPLATES SOLUTION L, DOI DOI 10.1137/1.9781611971538
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[5]   Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Grau, Vicente ;
Rodriguez, Blanca ;
Burrage, Kevin .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (97)
[6]   AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS [J].
Burrage, Kevin ;
Hale, Nicholas ;
Kay, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2145-A2172
[7]  
Chan R.H., 2007, INTRO ITERATIVE TOEP
[8]  
Chavent G, 2009, SCI COMPUT, P1
[9]   A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients [J].
Chen, S. ;
Liu, F. ;
Jiang, X. ;
Turner, I. ;
Anh, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :591-601
[10]   An implicit numerical method for the two-dimensional fractional percolation equation [J].
Chen, S. ;
Liu, F. ;
Turner, I. ;
Anh, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4322-4331