A life prediction model for welded joints under multiaxial variable amplitude loading histories

被引:26
作者
Lee, Yung-Li [1 ]
Tjhung, Tana
Jordan, Algernon
机构
[1] DaimlerChrysler, Stress Lab, CIMS 484-05-20,800 Chrysler Dr, Auburn Hills, MI 48326 USA
[2] DaimlerChrysler, Durabil Dev, Auburn Hills, MI 48326 USA
关键词
nonproportional hardening; nonproportional loading; variable amplitude; constant amplitude; welded joints; As-welded; stress relieved; cumulative damage; fatigue life; multiaxial reversal counting;
D O I
10.1016/j.ijfatigue.2006.09.014
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper describes a simple damage model for fatigue life predictions of welded joints under nonproportional, constant, and variable amplitude loading histories. This model, an extension of Sonsino's effective equivalent stress amplitude method, consists of four material parameters accounting for the severity of nonproportional loading paths, the material's susceptibility to nonproportional hardening, the material's fatigue life under shear versus normal stresses, and the mean stress effect. These four parameters can be obtained by fatigue testing for S-N curves under bending only, torsion only, and 90 degrees out-of-phase loading. This paper investigates the validity of the fatigue damage model by comparing the analytical and the published experimental results for various welded joint configurations subjected to multiaxial constant amplitude loads. This paper also describes a procedure to predict fatigue lives of welded joints under nonproportional variable amplitude loading histories based on the linear cumulative damage rule, the proposed equivalent stress amplitude and the Wang-Brown reversal counting technique. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1162 / 1173
页数:12
相关论文
共 26 条
[1]  
[Anonymous], E1049 ASTM
[2]  
Archer R., 1987, INT C FAT WELD CONST, P63
[3]   A review of multiaxial fatigue of weldments:: experimental results, design code and critical plane approaches [J].
Bäckström, M ;
Marquis, G .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2001, 24 (05) :279-291
[4]  
Brown M. W., 1973, Proceedings of the Institution of Mechanical Engineers, V187, P745
[5]   DISLOCATION SUBSTRUCTURES AND NONPROPORTIONAL HARDENING [J].
DOONG, SH ;
SOCIE, DF ;
ROBERTSON, IM .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1990, 112 (04) :456-464
[6]  
Findley W.N., 1959, J ENG IND, P301
[7]  
Hobbacher A., 1996, FATIGUE DESIGN WELDE
[8]  
HONG YS, 1989, FATIGUE FRACT ENG M, V12, P323, DOI 10.1111/j.1460-2695.1989.tb00540.x
[9]   NONPROPORTIONAL LAW CYCLE FATIGUE CRITERION FOR TYPE-304 STAINLESS-STEEL [J].
ITOH, T ;
SAKANE, M ;
OHNAMI, M ;
SOCIE, DF .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1995, 117 (03) :285-292
[10]  
Itoh T, 1997, P 5 INT C BIAX MULT, VI, P173