Biocompatible Pressure Sensing Skins for Minimally Invasive Surgical Instruments

被引:23
作者
Arabagi, Veaceslav [1 ,2 ]
Felfoul, Ouajdi [1 ,3 ]
Gosline, Andrew H. [1 ,4 ]
Wood, Robert J. [5 ]
Dupont, Pierre E. [1 ]
机构
[1] Harvard Univ, Sch Med, Boston Childrens Hosp, Boston, MA 02115 USA
[2] Helbling Precis Engn, Cambridge, MA 02142 USA
[3] GE Healthcare, Waukesha, WI 53188 USA
[4] Human Design Med LLC, Charlottesville, VA 22902 USA
[5] Harvard Univ, Sch Engn & Appl Sci, Wyss Inst, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
Pressure sensing arrays; sensing skins; surgical instruments; biocompatible sensors; STRAIN SENSOR; SURGERY; MATRIX; DEVICE; FORCE;
D O I
10.1109/JSEN.2015.2498481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents 800-mu m thick, biocompatible sensing skins composed of arrays of pressure sensors. The arrays can be configured to conform to the surface of medical instruments so as to act as disposable sensing skins. In particular, the fabrication of cylindrical geometries is considered here for use on endoscopes. The sensing technology is based on polydimethylsiloxane synthetic silicone encapsulated microchannels filled with a biocompatible salt-saturated glycerol solution, functioning as the conductive medium. A multi-layer manufacturing approach is introduced that enables stacking sensing microchannels, mechanical stress concentration features, and electrical routing via flexcircuits in a thickness of less than 1 mm. The proposed approach is inexpensive and does not require clean room tools or techniques. The mechanical stress concentration features are implemented using a patterned copper layer that serves to improve sensing range and sensitivity. Sensor performance is demonstrated experimentally using a sensing skin mounted on a neuroendoscope insertion cannula and is shown to outperform previously developed non-biocompatible sensors.
引用
收藏
页码:1294 / 1303
页数:10
相关论文
共 28 条
[11]   Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review [J].
Khan, Saleem ;
Lorenzelli, Leandro ;
Dahiya, Ravinder S. .
IEEE SENSORS JOURNAL, 2015, 15 (06) :3164-3185
[12]  
Kramer RK, 2011, IEEE INT CONF ROBOT, P1103, DOI 10.1109/ICRA.2011.5980082
[13]   High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors [J].
Lee, Curtis ;
Jug, Louis ;
Meng, Ellis .
APPLIED PHYSICS LETTERS, 2013, 102 (18)
[14]  
Lei YH, 2011, PROC IEEE MICR ELECT, P1123, DOI 10.1109/MEMSYS.2011.5734627
[15]   A non-differential elastomer curvature sensor for softer-than-skin electronics [J].
Majidi, C. ;
Kramer, R. ;
Wood, R. J. .
SMART MATERIALS AND STRUCTURES, 2011, 20 (10)
[16]  
Mengüç Y, 2013, IEEE INT CONF ROBOT, P5309, DOI 10.1109/ICRA.2013.6631337
[17]  
Pan CF, 2013, NAT PHOTONICS, V7, P752, DOI [10.1038/NPHOTON.2013.191, 10.1038/nphoton.2013.191]
[18]   Hyperelastic pressure sensing with a liquid-embedded elastomer [J].
Park, Yong-Lae ;
Majidi, Carmel ;
Kramer, Rebecca ;
Berard, Phillipe ;
Wood, Robert J. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (12)
[19]   State-of-the-art in force and tactile sensing for minimally invasive surgery [J].
Puangmali, Pinyo ;
Althoefer, Kaspar ;
Seneviratne, Lakmal D. ;
Murphy, Declan ;
Dasgupta, Prokar .
IEEE SENSORS JOURNAL, 2008, 8 (3-4) :371-381
[20]   A Comparative Direct Cost Analysis of Pediatric Urologic Robot-Assisted Laparoscopic Surgery Versus Open Surgery: Could Robot-Assisted Surgery Be Less Expensive? [J].
Rowe, Courtney K. ;
Pierce, Michael W. ;
Tecci, Katherine C. ;
Houck, Constance S. ;
Mandell, James ;
Retik, Alan B. ;
Nguyen, Hiep T. .
JOURNAL OF ENDOUROLOGY, 2012, 26 (07) :871-877